Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 163(4): 894-906, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544938

RESUMEN

A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.


Asunto(s)
Pérdida Auditiva Provocada por Ruido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Peroxisomas/metabolismo , Proteínas/metabolismo , Animales , Vías Auditivas , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido/patología , Humanos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Estrés Oxidativo , Proteínas/genética
2.
J Neurosci ; 42(31): 6108-6120, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35760528

RESUMEN

Speech perception in noisy environments is enhanced by seeing facial movements of communication partners. However, the neural mechanisms by which audio and visual speech are combined are not fully understood. We explore MEG phase-locking to auditory and visual signals in MEG recordings from 14 human participants (6 females, 8 males) that reported words from single spoken sentences. We manipulated the acoustic clarity and visual speech signals such that critical speech information is present in auditory, visual, or both modalities. MEG coherence analysis revealed that both auditory and visual speech envelopes (auditory amplitude modulations and lip aperture changes) were phase-locked to 2-6 Hz brain responses in auditory and visual cortex, consistent with entrainment to syllable-rate components. Partial coherence analysis was used to separate neural responses to correlated audio-visual signals and showed non-zero phase-locking to auditory envelope in occipital cortex during audio-visual (AV) speech. Furthermore, phase-locking to auditory signals in visual cortex was enhanced for AV speech compared with audio-only speech that was matched for intelligibility. Conversely, auditory regions of the superior temporal gyrus did not show above-chance partial coherence with visual speech signals during AV conditions but did show partial coherence in visual-only conditions. Hence, visual speech enabled stronger phase-locking to auditory signals in visual areas, whereas phase-locking of visual speech in auditory regions only occurred during silent lip-reading. Differences in these cross-modal interactions between auditory and visual speech signals are interpreted in line with cross-modal predictive mechanisms during speech perception.SIGNIFICANCE STATEMENT Verbal communication in noisy environments is challenging, especially for hearing-impaired individuals. Seeing facial movements of communication partners improves speech perception when auditory signals are degraded or absent. The neural mechanisms supporting lip-reading or audio-visual benefit are not fully understood. Using MEG recordings and partial coherence analysis, we show that speech information is used differently in brain regions that respond to auditory and visual speech. While visual areas use visual speech to improve phase-locking to auditory speech signals, auditory areas do not show phase-locking to visual speech unless auditory speech is absent and visual speech is used to substitute for missing auditory signals. These findings highlight brain processes that combine visual and auditory signals to support speech understanding.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Corteza Visual , Estimulación Acústica , Corteza Auditiva/fisiología , Percepción Auditiva , Femenino , Humanos , Lectura de los Labios , Masculino , Habla/fisiología , Percepción del Habla/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología
3.
PLoS Biol ; 17(4): e3000210, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30939128

RESUMEN

To form a percept of the environment, the brain needs to solve the binding problem-inferring whether signals come from a common cause and are integrated or come from independent causes and are segregated. Behaviourally, humans solve this problem near-optimally as predicted by Bayesian causal inference; but the neural mechanisms remain unclear. Combining Bayesian modelling, electroencephalography (EEG), and multivariate decoding in an audiovisual spatial localisation task, we show that the brain accomplishes Bayesian causal inference by dynamically encoding multiple spatial estimates. Initially, auditory and visual signal locations are estimated independently; next, an estimate is formed that combines information from vision and audition. Yet, it is only from 200 ms onwards that the brain integrates audiovisual signals weighted by their bottom-up sensory reliabilities and top-down task relevance into spatial priority maps that guide behavioural responses. As predicted by Bayesian causal inference, these spatial priority maps take into account the brain's uncertainty about the world's causal structure and flexibly arbitrate between sensory integration and segregation. The dynamic evolution of perceptual estimates thus reflects the hierarchical nature of Bayesian causal inference, a statistical computation, which is crucial for effective interactions with the environment.


Asunto(s)
Percepción Auditiva/fisiología , Psicofísica/métodos , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Teorema de Bayes , Encéfalo/fisiología , Electroencefalografía/métodos , Movimientos Oculares/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa , Adulto Joven
4.
Nat Commun ; 13(1): 3924, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798733

RESUMEN

The brain adapts dynamically to the changing sensory statistics of its environment. Recent research has started to delineate the neural circuitries and representations that support this cross-sensory plasticity. Combining psychophysics and model-based representational fMRI and EEG we characterized how the adult human brain adapts to misaligned audiovisual signals. We show that audiovisual adaptation is associated with changes in regional BOLD-responses and fine-scale activity patterns in a widespread network from Heschl's gyrus to dorsolateral prefrontal cortices. Audiovisual recalibration relies on distinct spatial and decisional codes that are expressed with opposite gradients and time courses across the auditory processing hierarchy. Early activity patterns in auditory cortices encode sounds in a continuous space that flexibly adapts to misaligned visual inputs. Later activity patterns in frontoparietal cortices code decisional uncertainty consistent with these spatial transformations. Our findings suggest that regions within the auditory processing hierarchy multiplex spatial and decisional codes to adapt flexibly to the changing sensory statistics in the environment.


Asunto(s)
Corteza Auditiva , Percepción Auditiva , Estimulación Acústica , Adulto , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Estimulación Luminosa , Psicofísica , Percepción Visual/fisiología
5.
Hear Res ; 371: 75-86, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30504093

RESUMEN

Ca2+ is an important intracellular messenger and regulator in both physiological and pathophysiological mechanisms in the hearing organ. Investigation of cellular Ca2+ homeostasis in the mature cochlea is hampered by the special anatomy and high vulnerability of the organ. A quick, straightforward and reliable Ca2+ imaging method with high spatial and temporal resolution in the mature organ of Corti is missing. Cell cultures or isolated cells do not preserve the special microenvironment and intercellular communication, while cochlear explants are excised from only a restricted portion of the organ of Corti and usually from neonatal pre-hearing murines. The hemicochlea, prepared from hearing mice allows tonotopic experimental approach on the radial perspective in the basal, middle and apical turns of the organ. We used the preparation recently for functional imaging in supporting cells of the organ of Corti after bulk loading of the Ca2+ indicator. However, bulk loading takes long time, is variable and non-selective, and causes the accumulation of the indicator in the extracellular space. In this study we show the improved labeling of supporting cells of the organ of Corti by targeted single-cell electroporation in mature mouse hemicochlea. Single-cell electroporation proved to be a reliable way of reducing the duration and variability of loading and allowed subcellular Ca2+ imaging by increasing the signal-to-noise ratio, while cell viability was retained during the experiments. We demonstrated the applicability of the method by measuring the effect of purinergic, TRPA1, TRPV1 and ACh receptor stimulation on intracellular Ca2+ concentration at the cellular and subcellular level. In agreement with previous results, ATP evoked reversible and repeatable Ca2+ transients in Deiters', Hensen's and Claudius' cells. TRPA1 and TRPV1 stimulation by AITC and capsaicin, respectively, failed to induce any Ca2+ response in the supporting cells, except in a single Hensen's cell in which AITC evoked transients with smaller amplitude. AITC also caused the displacement of the tissue. Carbachol, agonist of ACh receptors induced Ca2+ transients in about a third of Deiters' and fifth of Hensen's cells. Here we have presented a fast and cell-specific indicator loading method allowing subcellular functional Ca2+ imaging in supporting cells of the organ of Corti in the mature hemicochlea preparation, thus providing a straightforward tool for deciphering the poorly understood regulation of Ca2+ homeostasis in these cells.


Asunto(s)
Calcio/metabolismo , Cóclea/citología , Cóclea/metabolismo , Adenosina Trifosfato/metabolismo , Compuestos de Anilina/administración & dosificación , Animales , Quelantes del Calcio/administración & dosificación , Señalización del Calcio/efectos de los fármacos , Carbacol/administración & dosificación , Cóclea/efectos de los fármacos , Electroporación/métodos , Fluoresceínas/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Fura-2/administración & dosificación , Técnicas In Vitro , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Ratones , Ratones Endogámicos BALB C , Órgano Espiral/citología , Órgano Espiral/efectos de los fármacos , Órgano Espiral/metabolismo , Receptores Colinérgicos/metabolismo , Análisis de la Célula Individual/métodos , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
6.
Sci Rep ; 8(1): 12376, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120294

RESUMEN

Information integration across the senses is fundamental for effective interactions with our environment. The extent to which signals from different senses can interact in the absence of awareness is controversial. Combining the spatial ventriloquist illusion and dynamic continuous flash suppression (dCFS), we investigated in a series of two experiments whether visual signals that observers do not consciously perceive can influence spatial perception of sounds. Importantly, dCFS obliterated visual awareness only on a fraction of trials allowing us to compare spatial ventriloquism for physically identical flashes that were judged as visible or invisible. Our results show a stronger ventriloquist effect for visible than invisible flashes. Critically, a robust ventriloquist effect emerged also for invisible flashes even when participants were at chance when locating the flash. Collectively, our findings demonstrate that signals that we are not aware of in one sensory modality can alter spatial perception of signals in another sensory modality.


Asunto(s)
Percepción Auditiva/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adolescente , Adulto , Femenino , Humanos , Ilusiones , Masculino , Estimulación Luminosa , Adulto Joven
7.
Artículo en Inglés | MEDLINE | ID: mdl-25774126

RESUMEN

To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception.

8.
Neurochem Int ; 60(6): 631-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22406418

RESUMEN

Complement C5a is associated primarily with inflammation. The widespread expression of its receptors, C5aR and C5L2 in neuronal cells, however, suggests additional regulatory roles for C5a in the CNS. C5aR agonist (PL37-MAP) evokes Ca(2+)-influx in GT1-7 neuronal cell line and the Ca(2+)-influx is regulated by estradiol. In the present study, we examined further the mechanism of Ca(2+)-influx and the contribution of the two estrogen receptor (ER) isotypes, ERα and ERß, to estrogenic modulation of intracellular Ca(2+)-content. GT1-7 neurons were treated with isotype selective ER agonists for 24h then C5aR agonist evoked Ca(2+)-responses were measured by Ca(2+)-imaging. Transcriptional changes were followed by real-time PCR. We found that not only estradiol (100 pM), but the ERα selective agonist PPT (100 pM) enhanced the PL37-MAP-evoked Ca(2+)-influx (E2: 215%, PPT: 175%, compared to the PL37-MAP-evoked Ca(2+)-influx). In contrast, the ERß selective agonist DPN (100 pM) significantly reduced the Ca(2+)-influx (32%). Attenuated Ca(2+)-response (25%) was observed in Ca-free environment and depletion of the Ca(2+)-pool by CPA eliminated the remaining elevation in the Ca(2+)-content, demonstrating that the majority of Ca(2+) originated from the extracellular compartment. L-type voltage-gated Ca(2+)-channel (L-VGCC) blocker nifedipine abolished the Ca(2+)-influx, while R-type Ca(2+)-channel blocker SNX-482 had no effect, exemplifying the predominant role of L-VGCC in this process. Acute pre-treatments (8 min) with ER agonists did not affect the evoked Ca(2+)-influx, revealing that the observed effects of estrogens were genomic. Therefore, we checked estrogenic regulation of C5a receptors and L-VGCC subunits. ER agonists increased C5aR mRNA expression, whereas they differentially regulated C5L2. Estradiol decreased transcription of Ca(v)1.3 L-VGCC subunit. Based on these results we propose that estradiol may differentially modulate C5a-induced Ca(2+)-influx via L-VGCCs in neurons depending on the expression of the two ER isotypes.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Neuronas/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Línea Celular Transformada , Receptor alfa de Estrógeno/agonistas , Receptor beta de Estrógeno/agonistas , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Receptor de Anafilatoxina C5a/agonistas , Receptor de Anafilatoxina C5a/genética
9.
Neurochem Int ; 59(2): 150-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21672572

RESUMEN

The prevalence of sensorineural hearing loss is increasing worldwide, mainly due to ageing, increased noise exposure and cardiovascular risk factors. Several papers dealt with the mechanisms underlying the primary causes of impaired hearing and eventual deafness, including the damage and loss of auditory hair cells; however, very little is known about the protective mechanisms that exist for hearing. Several recent investigations have implicated dopamine (DA) in a neuroprotective circuit for the cochlea. The lateral olivocochlear (LOC) efferents provide axonal innervation of the inner hair cell afferent synapses and release DA and other substances in response to different stimuli. Under ischemic conditions or during noise exposure, DA has been proven to play a neuroprotective role against glutamate excitotoxicity. This review summarises what is currently known about the modulation of DA release in the cochlea, using primarily in vitro experimental data. Based on recent knowledge, there could be two functional subgroups within the LOC fibres, i.e., the DA- and GABA-containing projections. In this review, we attempt to show the neurochemical interactions between these two subsystems. Other aspects of cochlear neurotransmission are also discussed to provide a complete picture of cochlear dopaminergic function in physiological and pathophysiological cases with particular reference to excitotoxicity.


Asunto(s)
Cóclea/efectos de los fármacos , Dopamina/metabolismo , Fármacos Neuroprotectores/farmacología , Cóclea/metabolismo , Humanos , Óxido Nítrico/biosíntesis , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA