Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Angew Chem Int Ed Engl ; 59(28): 11501-11509, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297421

RESUMEN

CsPbX3 perovskite nanoplates (PNPLs) were formed in a synthesis driven by SnX4 (X=Cl, Br, I) salts. The role played by these hard Lewis acids in directing PNPL formation is addressed. Sn4+ disturbs the acid-base equilibrium of the system, increasing the protonation rate of oleylamine and inducing anisotropic growth of nanocrystals. Sn4+ cations influence the reaction dynamics owing to complexation with oleylamine molecules. By monitoring the photoluminescence excitation and photoluminescence (PL) spectra of the PNPLs grown at different temperatures, the influence of the thickness on their optical properties is mapped. Time-resolved and spectrally resolved PL for colloidal dispersions with different optical densities reveals that the dependence of the overall PL lifetime on the emission wavelength do not originate from energy transfer between PNPLs but from the contribution of PNPLs with distinct thickness, indicating that thicker PNPLs exhibit longer PL lifetimes.

2.
J Chem Phys ; 151(19): 191103, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757140

RESUMEN

The bandgaps of CsPbI3 perovskite nanocrystals are measured by absorption spectroscopy at cryogenic temperatures. Anomalous bandgap shifts are observed in CsPbI3 nanocubes and nanoplatelets, which are modeled accurately by bandgap renormalization due to lattice vibrational modes. We find that decreasing dimensionality of the CsPbI3 lattice in nanoplatelets greatly reduces electron-phonon coupling, and dominant out-of-plane quantum confinement results in a homogeneously broadened absorption line shape down to cryogenic temperatures. An absorption tail forms at low-temperatures in CsPbI3 nanocubes, which we attribute to shallow defect states positioned near the valence band edge.

3.
Nano Lett ; 17(10): 5938-5949, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28895736

RESUMEN

Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.


Asunto(s)
Antígenos de Protozoos/análisis , Técnicas Biosensibles/instrumentación , Enfermedad de Chagas/diagnóstico , Nanocables/química , Trypanosoma cruzi/aislamiento & purificación , Anticuerpos Inmovilizados/química , Antígenos de Protozoos/genética , Biomarcadores/análisis , Técnicas Biosensibles/métodos , Enfermedad de Chagas/parasitología , ADN/análisis , ADN/genética , Diseño de Equipo , Humanos , Indio/química , Modelos Moleculares , Fosfinas/química , Propiedades de Superficie , Transistores Electrónicos , Trypanosoma cruzi/genética
4.
Opt Express ; 23(15): 19715-27, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367629

RESUMEN

In this work we describe a method to obtain photoluminescente excitation spectra, through one and two photon absorption, of CdTe quantum dots, based on a confocal microscope platform. This system becomes an analytical multipurpose characterization platform with spatial, and spectral resolution with temperature control. The capabilities of such platform were demonstrated by photoluminescence and second harmonic generation spectra acquisition as a function of temperature from 10 K to room temperature. The differences for one and two photons transition selection rules between the quantum dot confined levels provide access to intra and inter band, forbidden in one photon transitions, information that could be used to validate confinement models. The results agree well with the transition selection rules calculated with a parabolic model.

5.
Sensors (Basel) ; 11(12): 11664-78, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22247686

RESUMEN

Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II-VI or III-V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus.


Asunto(s)
Compuestos de Cadmio/farmacología , Pruebas de Sensibilidad Microbiana , Puntos Cuánticos , Compuestos de Selenio/farmacología , Telurio/farmacología , Animales , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Virus/efectos de los fármacos
6.
Sci Adv ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523833

RESUMEN

Advances in optoelectronics require materials with novel and engineered characteristics. A class of materials that has garnered tremendous interest is metal-halide perovskites, stimulated by meteoric increases in photovoltaic efficiencies of perovskite solar cells. In addition, recent advances have applied perovskite nanocrystals (NCs) in light-emitting devices. It was found recently that, for cesium lead-halide perovskite NCs, their unusually efficient light emission may be due to a unique excitonic fine structure composed of three bright triplet states that minimally interact with a proximal dark singlet state. To study this fine structure without isolating single NCs, we use multidimensional coherent spectroscopy at cryogenic temperatures to reveal coherences involving triplet states of a CsPbI3 NC ensemble. Picosecond time scale dephasing times are measured for both triplet and inter-triplet coherences, from which we infer a unique exciton fine structure level ordering composed of a dark state energetically positioned within the bright triplet manifold.

7.
ACS Nano ; 15(4): 6499-6506, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33769788

RESUMEN

Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.

8.
Methods Mol Biol ; 2135: 85-93, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32246329

RESUMEN

Colloidal quantum dots (QDs), due to their versatile optoelectronic properties, have been used in life science applications, especially in fluorescence-based techniques, for over two decades. A great variety of QD syntheses and conjugations are available, and tailoring these for the desired application requires a refined structural characterization. Life science applications rely on the interaction of QDs with biostructures; hence, the knowledge of the QD actual size (i.e., its hydrodynamic radius in the medium the experiment is being carried) and the size of their conjugates is paramount. Fluorescence correlation spectroscopy (FCS) is an optical technique that uses fluorophore light emission to measure its hydrodynamic radius, instead of relying on particle light scattering or crystalline structure, making it ideal for studying bioconjugated QDs in suspension. From the fluorescence intensity autocorrelation, FCS measures the diffusion coefficient of systems in a diluted sample and, by obtaining the diffusion coefficient, it is possible to calculate its hydrodynamic radius. In this chapter we describe the main aspects of the FCS technique and how to use it to calculate the hydrodynamic radius of QDs.


Asunto(s)
Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Fluorescencia , Colorantes Fluorescentes/química , Hidrodinámica , Radio (Anatomía)
9.
Parasitol Res ; 106(1): 85-93, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19756738

RESUMEN

Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals markers that allow long photobleaching and do not destroy the parasites. In this paper, we used fluorescent core shell quantum dots to perform studies of live parasite-vector interaction processes without any observable effect on the vitality of parasites. These nanocrystals were synthesized in aqueous medium and physiological pH, which is very important for monitoring live cells activities, and conjugated with molecules such as lectins to label specific carbohydrates involved on the parasite-vector interaction. These QDs were successfully used for the study of in vitro and in vivo interaction of Trypanosoma cruzi and the triatomine Rhodnius prolixus. These QDs allowed us to acquire real time confocal images sequences of live T. cruzi-R. prolixus interactions for an extended period, causing no damage to the cells. By zooming to the region of interest, we have been able to acquire confocal images at the three to four frames per second rate. Our results show that QDs are physiological fluorescent markers capable to label living parasites and insect vector cells. QDs can be functionalized with lectins to specifically mark surface carbohydrates on perimicrovillar membrane of R. prolixus to follow, visualize, and understand interaction between vectors and its parasites in real-time.


Asunto(s)
Compuestos Cromogénicos/farmacología , Interacciones Huésped-Parásitos , Parasitología/métodos , Puntos Cuánticos , Rhodnius/parasitología , Coloración y Etiquetado/métodos , Trypanosoma cruzi/crecimiento & desarrollo , Animales , Microscopía Confocal
10.
J Phys Chem Lett ; 10(20): 6144-6150, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31556615

RESUMEN

Coupling to phonon modes is a primary mechanism of excitonic dephasing and energy loss in semiconductors. However, low-energy phonons in colloidal quantum dots and their coupling to excitons are poorly understood because their experimental signatures are weak and usually obscured by the unavoidable inhomogeneous broadening of colloidal dot ensembles. We use multidimensional coherent spectroscopy at cryogenic temperatures to extract the homogeneous nonlinear optical response of excitons in a CdSe/CdZnS core/shell colloidal quantum dot ensemble. A comparison to the simulation provides evidence that the observed lineshapes arise from the coexistence of confined and delocalized vibrational modes, both of which couple strongly to excitons in CdSe/CdZnS colloidal quantum dots.

11.
Methods Mol Biol ; 1199: 85-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25103801

RESUMEN

Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).


Asunto(s)
Hidrodinámica , Puntos Cuánticos/química , Calibración , Espectrometría de Fluorescencia
12.
Microsc Res Tech ; 75(10): 1383-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22648907

RESUMEN

In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two-photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy-to-operate platform capable to perform two-photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Adenocarcinoma Mucinoso/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Cebollas/citología , Neoplasias Ováricas/patología , Solanum tuberosum/citología
13.
PLoS One ; 7(10): e47007, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056557

RESUMEN

BACKGROUND: Nonlinear optical (NLO) microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF), second-harmonic generation (SHG), third-harmonic generation (THG) and fluorescence lifetime imaging microscopy (FLIM) can detect morphological and metabolic changes associated with ovarian cancer progression. METHODOLOGY/PRINCIPAL FINDINGS: We obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E) and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years) including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells. CONCLUSIONS/SIGNIFICANCE: NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.


Asunto(s)
Adenocarcinoma Mucinoso/diagnóstico , Adenocarcinoma Mucinoso/patología , Microscopía , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Suero/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario , Femenino , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica , Persona de Mediana Edad , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Ovario/patología
14.
J Biomed Opt ; 16(9): 096017, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21950931

RESUMEN

We used a multimodal nonlinear optics microscopy, specifically two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG∕THG) microscopies, to observe pathological conditions of ovarian tissues obtained from human samples. We show that strong TPEF + SHG + THG signals can be obtained in fixed samples stained with hematoxylin and eosin (H&E) stored for a very long time, and that H&E staining enhanced the THG signal. We then used the multimodal TPEF-SHG-THG microscopies in a stored file of H&E stained samples of human ovarian cancer to obtain complementary information about the epithelium∕stromal interface, such as the transformation of epithelium surface (THG) and the overall fibrillary tissue architecture (SHG). This multicontrast nonlinear optics microscopy is able to not only differentiate between cancerous and healthy tissue, but can also distinguish between normal, benign, borderline, and malignant specimens according to their collagen disposition and compression levels within the extracellular matrix. The dimensions of the layers of epithelia can also be measured precisely and automatically. Our data demonstrate that optical techniques can detect pathological changes associated with ovarian cancer.


Asunto(s)
Cistadenocarcinoma Seroso/patología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neoplasias Ováricas/patología , Adulto , Anciano , Análisis de Varianza , Colágeno/química , Cistadenocarcinoma Seroso/química , Células Epiteliales/química , Células Epiteliales/patología , Diseño de Equipo , Femenino , Histocitoquímica , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Persona de Mediana Edad , Neoplasias Ováricas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA