Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182589

RESUMEN

Long period gratings (LPGs) inscribed in single mode fibers (SMFs) using CO2 laser irradiation were modelled numerically using the coupled mode method. The model considers the specifications of the inscription technique, such as the shape of the refractive index modulation that mimics the circularly symmetric point-to-point laser irradiation profile. A simple expression for predicting the resonant wavelength was obtained assuming a two-mode coupling model. However, to explain the spectra of the experimental LPGs, it was necessary to assume a reasonably high refractive index change and a multimode coupling model. Furthermore, using the developed model and a genetic algorithm to fit experimental resonances to simulated ones, we were able to estimate the maximum refractive index change, obtaining a value of 2.2 × 10-3, confirming the high refractive index change. The proposed model also predicts a second order resonance for this high value of refractive index change that was confirmed experimentally. Hence, with this model, we found some significant differences in the LPGs behavior when compared with conventional ones, namely, the emergence of coupling between different cladding modes and the competition of first and second order resonances which change the LPG transmission spectrum.

2.
Opt Lett ; 42(10): 1994-1997, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504732

RESUMEN

We propose a technique to inscribe long period gratings (LPGs) in standard single-mode fibers (SSMFs). The proposed method uses a commercial CO2 splicer that allows for the rotation of the fiber during laser irradiation, enabling a uniform exposure around the fiber. LPGs inscribed in SSMFs with different periods are presented. Gratings can be reproduced with a maximum difference between resonant wavelength values of less than 1 nm. Furthermore, it is possible to inscribe gratings with attenuation dips of -25 dB while at the same time obtaining polarization-dependent losses as low as 2 dB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA