Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioelectromagnetics ; 35(6): 414-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25043829

RESUMEN

The influence of extremely low frequency electromagnetic fields on net photosynthesis, transpiration, photosynthetic pigment concentration, and gene expression of ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (RBCS1), during in vitro establishment, in vitro multiplication and acclimatization phases of coffee seedlings were investigated. Untreated coffee plants were considered as control, whereas treated plants were exposed to a 60 Hz sinusoidal magnetic field of 2 mT of magnetic induction during 3 min. This magnetic field was generated by an electromagnet, connected to a wave generator. The results revealed that magnetically treated plants showed a significant increase in net photosynthesis (85.4% and 117.9%, in multiplication and acclimatization phases, respectively), and in photosynthetic pigment concentration (66.6% for establishment phase, 79.9% for multiplication phase, and 43.8% for acclimatization phase). They also showed a differential RBCS1 gene expression (approximately twofold) and a decrease of transpiration rates in regard to their control plants. In conclusion, the findings suggest that the application of 60 Hz magnetic field to in vitro coffee plants may improve the seedlings quality by modifying some photosynthetic physiological and molecular processes, increasing their vigor, and ensuring better plant development in later stages.


Asunto(s)
Coffea/fisiología , Coffea/efectos de la radiación , Campos Magnéticos , Plantones/fisiología , Plantones/efectos de la radiación , Aclimatación/fisiología , Aclimatación/efectos de la radiación , Clorofila/metabolismo , Expresión Génica/fisiología , Expresión Génica/efectos de la radiación , Magnetismo , Microscopía Electrónica de Rastreo , Periodicidad , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Transpiración de Plantas/fisiología , Transpiración de Plantas/efectos de la radiación
2.
Front Plant Sci ; 13: 824948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463406

RESUMEN

Coffee (Coffea arabica L.) presents an asynchronous flowering regulated by an endogenous and environmental stimulus, and anthesis occurs once plants are rehydrated after a period of water deficit. We evaluated the evolution of Abscisic Acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylate (ACC) content, ACC oxidase (ACO) activity, and expression analysis of the Lysine Histidine Transporter 1 (LHT1) transporter, in the roots, leaves, and flower buds from three coffee genotypes (C. arabica L. cv Oeiras, Acauã, and Semperflorens) cultivated under field conditions with two experiments. In a third field experiment, the effect of the exogenous supply of ACC in coffee anthesis was evaluated. We found an increased ACC level, low ACO activity, decreased level of ethylene, and a decreased level of ABA in all tissues from the three coffee genotypes in the re-watering period just before anthesis, and a high expression of the LHT1 in flower buds and leaves. The ethylene content and ACO activity decreased from rainy to dry period whereas the ABA content increased. A higher number of opened and G6 stage flower buds were observed in the treatment with exogenous ACC. The results showed that the interaction of ABA-ACO-ethylene and intercellular ACC transport among the leaves, buds, and roots in coffee favors an increased level of ACC that is most likely, involved as a modulator in coffee anthesis. This study provides evidence that ACC can play an important role independently of ethylene in the anthesis process in a perennial crop.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA