RESUMEN
Irritable bowel syndrome with diarrhea (IBS-D) is the most prevalent subtype of IBS, characterized by chronic gastrointestinal symptoms in the absence of identifiable pathological findings. This study aims to investigate the molecular mechanisms underlying IBS-D using transcriptomic data. By employing causal network inference methods, we identify key transcriptomic modules associated with IBS-D. Utilizing data from public databases and applying advanced computational techniques, we uncover potential biomarkers and therapeutic targets. Our analysis reveals significant molecular alterations that affect cellular functions, offering new insights into the complex pathophysiology of IBS-D. These findings enhance our understanding of the disease and may foster the development of more effective treatments.
Asunto(s)
Diarrea , Redes Reguladoras de Genes , Síndrome del Colon Irritable , Transcriptoma , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/metabolismo , Humanos , Diarrea/genética , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , BiomarcadoresRESUMEN
Endometrial cancer (EC) is the most common gynecologic malignancy of the endometrium. This study focuses on EC and normal endometrium phosphoproteome to identify differentially phosphorylated proteins involved in tumorigenic signalling pathways which induce cancer growth. We obtained tissue samples from 8 types I EC at tumour stage 1 and 8 normal endometria. We analyzed the phosphoproteome by two-dimensional differential gel electrophoresis (2D-DIGE), combined with immobilized metal affinity chromatography (IMAC) and mass spectrometry for protein and phosphopeptide identification. Quantities of 34 phosphoproteins enriched by the IMAC approach were significantly different in the EC compared to the endometrium. Validation using Western blotting analysis on 13 patients with type I EC at tumour stage 1 and 13 endometria samples confirmed the altered abundance of HBB, CKB, LDHB, and HSPB1. Three EC samples were used for in-depth identification of phosphoproteins by LC-MS/MS analysis. Bioinformatic analysis revealed several tumorigenic signalling pathways. Our study highlights the involvement of the phosphoproteome in EC tumour growth. Further studies are needed to understand the role of phosphorylation in EC. Our data shed light on mechanisms that still need to be ascertained but could open the path to a new class of drugs that could hinder EC growth.
Asunto(s)
Neoplasias Endometriales , Fosfoproteínas , Humanos , Femenino , Fosfoproteínas/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía de Afinidad/métodos , ProteomaRESUMEN
Endometrial cancer (EC) is the most frequent gynecologic cancer in postmenopausal women. Pathogenetic mechanisms that are related to the onset and progression of the disease are largely still unknown. A multi-omics strategy can help identify altered pathways that could be targeted for improving therapeutical approaches. In this study we used a multi-omics approach on four EC cell lines for the identification of common dysregulated pathways in type 1 and 2 ECs. We analyzed proteomics and metabolomics of AN3CA, HEC1A, KLE and ISHIKAWA cell lines by mass spectrometry. The bioinformatic analysis identified 22 common pathways that are in common with both types of EC. In addition, we identified five proteins and 13 metabolites common to both types of EC. Western blotting analysis on 10 patients with type 1 and type 2 EC and 10 endometria samples confirmed the altered abundance of NPEPPS. Our multi-omics analysis identified dysregulated proteins and metabolites involved in EC tumor growth. Further studies are needed to understand the role of these molecules in EC. Our data can shed light on common pathways to better understand the mechanisms involved in the development and growth of EC, especially for the development of new therapies.
Asunto(s)
Neoplasias Endometriales , Multiómica , Humanos , Femenino , Neoplasias Endometriales/metabolismo , Metabolómica , Biología ComputacionalRESUMEN
Endometrial cancer (EC) is the most frequent gynaecologic cancer in postmenopausal women. We used 2D-DIGE and mass spectrometry to identify candidate biomarkers in endometrial cancer, analysing the serum protein contents of 10 patients versus 10 control subjects. Using gel-based proteomics, we identified 24 candidate biomarkers, considering only spots with a fold change in volume percentage ≥ 1.5 or intensity change ≤ 0.6, which were significantly different between cases and controls (p < 0.05). We used Western blotting analysis both in the serum and tissue of 43 patients for data validation. Among the identified proteins, we selected Suprabasin (SBSN), an oncogene previously associated with poor prognosis in different cancers. SBSN principal isoforms were subjected to Western blotting analysis in serum and surgery-excised tissue: both isoforms were downregulated in the tissue. However, in serum, isoform 1 was upregulated, while isoform 2 was downregulated. Data-mining on the TCGA and GTEx projects, using the GEPIA2.0 interface, indicated a diminished SBSN expression in the Uterine Corpus Endometrial Cancer (UCEC) database compared to normal tissue, confirming proteomic results. These results suggest that SBSN, specifically isoform 2, in tissue or serum, could be a potential novel biomarker in endometrial cancer.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Endometriales/metabolismo , Proteoma/metabolismo , Adulto , Antígenos de Diferenciación/metabolismo , Regulación hacia Abajo/fisiología , Endometrio/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Oncogenes/fisiología , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Electroforesis Bidimensional Diferencial en Gel/métodos , Regulación hacia Arriba/fisiologíaRESUMEN
Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Quimera por Trasplante/genética , Alelos , Marcadores Genéticos , Humanos , Polimorfismo Genético , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Trasplante HomólogoRESUMEN
Down syndrome (DS) is the most common genetic cause of cognitive disability. However, it is largely unclear how triplication of a small gene subset may impinge on diverse aspects of DS brain physiopathology. Here, we took a multi-omic approach and simultaneously analyzed by RNA-seq and proteomics the expression signatures of two diverse regions of human postmortem DS brains. We found that the overexpression of triplicated genes triggered global expression dysregulation, differentially affecting transcripts, miRNAs, and proteins involved in both known and novel biological candidate pathways. Among the latter, we observed an alteration in RNA splicing, specifically modulating the expression of genes involved in cytoskeleton and axonal dynamics in DS brains. Accordingly, we found an alteration in axonal polarization in neurons from DS human iPSCs and mice. Thus, our study provides an integrated multilayer expression database capable of identifying new potential targets to aid in designing future clinical interventions for DS.
Asunto(s)
Encéfalo , Síndrome de Down , Síndrome de Down/metabolismo , Síndrome de Down/genética , Síndrome de Down/patología , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Proteómica/métodos , Masculino , Neuronas/metabolismo , Axones/metabolismo , Axones/patología , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Empalme del ARN , MultiómicaRESUMEN
Endometrial cancer (EC) is the most common gynecologic malignancy, and it arises in the inner part of the uterus. Identification of serum biomarkers is essential for diagnosing the disease at an early stage. In this study, we selected 44 healthy controls and 44 type I EC at tumor stage 1, and we used the Immuno-oncology panel and the Target 96 Oncology III panel to simultaneously detect the levels of 92 cancer-related proteins in serum, using a proximity extension assay. By applying this methodology, we identified 20 proteins, associated with the outcome at binary logistic regression, with a p-value below 0.01 for the first panel and 24 proteins with a p-value below 0.02 for the second one. The final multivariate logistic regression model, combining proteins from the two panels, generated a model with a sensitivity of 97.67% and a specificity of 83.72%. These results support the use of the proposed algorithm after a validation phase.
RESUMEN
Endometrial cancers (ECs) are mostly adenocarcinomas arising from the inner part of the uterus. The identification of serum biomarkers, either soluble or carried in the exosome, may be useful in making an early diagnosis. We used label-free quantification mass spectrometry (LFQ-MS)-based proteomics to investigate the proteome of exosomes in the albumin-depleted serum from 12 patients with EC, as compared to 12 healthy controls. After quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 33 proteins in EC vs. control samples, with a fold change of ≥1.5 or ≤0.6. Validation using Western blotting analysis in 36 patients with EC as compared to 36 healthy individuals confirmed the upregulation of APOA1, HBB, CA1, HBD, LPA, SAA4, PF4V1, and APOE. A multivariate logistic regression model based on the abundance of these proteins was able to separate the controls from the EC patients with excellent sensitivity levels, particularly for stage 1 ECs. The results show that using LFQ-MS to explore the specific proteome of serum exosomes allows for the identification of biomarkers in EC. These observations suggest that PF4V1, CA1, HBD, and APOE represent biomarkers that are able to reach the clinical stage, after a validation phase.
RESUMEN
Endometrial cancer is the most common gynecologic malignancy arising from the endometrium. Identification of serum biomarkers could be beneficial for its early diagnosis. We have used 2D-Difference In Gel Electrophoresis (2D-DIGE) coupled with Mass Spectrometry (MS) procedures to investigate the serum proteome of 15 patients with endometrial cancer and 15 non-cancer subjects. We have identified 16 proteins with diagnostic potential, considering only spots with a fold change in %V ≥ 1.5 or ≤0.6 in intensity, which were statistically significant (p < 0.05). Western blotting data analysis confirmed the upregulation of CLU, ITIH4, SERPINC1, and C1RL in endometrial and exosome cancer sera compared to those of control subjects. The application of the logistic regression constructed based on the abundance of these four proteins separated the controls from the cancers with excellent levels of sensitivity and specificity. After a validation phase, our findings support the potential of using the proposed algorithm as a diagnostic tool in the clinical stage.
RESUMEN
Uterine leiomyoma presents the highest incidence among benign tumors of the female reproductive tract. The present study compared the proteome of leiomyoma treated with ulipristal acetate with that of untreated leiomyoma to investigate protein expression patterns in relation to oxidative stress. Paired tissue samples from seven treated and untreated leiomyomas were collected and the proteome was analyzed by twodimensional gel electrophoresis (2DE). Western blotting was used to validate the results of 2DE, and mass spectrometry was used to identify proteins. The tissue expression of 30 proteins was markedly affected by treatment with ulipristal acetate. Bioinformatics analysis revealed that several of the differentially expressed proteins were involved in the degradation of hydrogen peroxide and the synthesis of reactive oxygen species. The present study suggested the involvement of oxidative stress as a novel mechanism of action of ulipristal acetate. These findings require further investigations to understand the role of ulipristal acetate in the treatment of the leiomyoma.
Asunto(s)
Redes Reguladoras de Genes/efectos de los fármacos , Leiomioma/tratamiento farmacológico , Norpregnadienos/administración & dosificación , Proteómica/métodos , Neoplasias Uterinas/tratamiento farmacológico , Adulto , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Leiomioma/metabolismo , Espectrometría de Masas , Norpregnadienos/farmacología , Estrés Oxidativo/efectos de los fármacos , Mapas de Interacción de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Uterinas/metabolismoRESUMEN
Uterine leiomyomas are benign smooth muscle cell tumors originating from the myometrium. In this study we focus on leiomyoma and normal myometrium phosphoproteome, to identify differentially phosphorylated proteins involved in tumorigenic signaling pathways, and in anti-apoptotic processes and cell survival. We obtained paired tissue samples of seven leiomyomas and adjacent myometria and analyzed the phosphoproteome by two-dimensional gel electrophoresis (2-DE) combined with immobilized metal affinity chromatography (IMAC) and Pro-Q Diamond phosphoprotein gel stain. We used mass spectrometry for protein identification and Western blotting for 2-DE data validation. Quantities of 33 proteins enriched by the IMAC approach were significantly different in the leiomyoma if compared to the myometrium. Bioinformatic analysis revealed ten tumorigenic signaling pathways and four phosphoproteins involved in both the inhibition of apoptosis and cell survival. Our study highlights the involvement of the phosphoproteome in leiomyoma growth. Further studies are needed to understand the role of phosphorylation in leiomyoma. Our data shed light on mechanisms that still need to be ascertained, but could open the path to a new class of drugs that not only can block the growth, but could also lead to a significant reduction in tumor size.
RESUMEN
Congenital disorder of glycosylation (CDG) type Ia is a multisystem disorder that occurs due to mutations in the phosphomannomutase 2 (PMM2) gene, which encodes for an enzyme involved in the Nglycosylation pathway. Mutated PMM2 leads to the reduced conversion of mannose6P to mannose1P, which results in low concentration levels of guanosine 5'diphosphoDmannose (GDPMan), a nucleotideactivated sugar essential for the construction of protein oligosaccharide chains. In the present study, an in vitro therapeutic approach was used, based on GDPManloaded poly (D,Llactidecoglycolide) (PLGA) nanoparticles (NPs), which were used to treat CDGIa fibroblast cultures, thus bypassing the glycosylation pathway reaction catalysed by PMM2. To assess the degree of hypoglycosylation in vitro, the present study examined the activities of αmannosidase, ßglucoronidase and ßgalactosidase in defective and normal fibroblasts. GDPMan (30 µg/ml GDPMan PLGA NPs) was incubated for 48 h with the cells and the specific activities of αmannosidase and ßgalactosidase were estimated at 69 and 92% compared with healthy controls. The residual activity of ßglucoronidase increased from 6.5 to 32.5% and was significantly higher compared with that noted in the untreated CDGIa fibroblasts. The glycosylation process of fibroblasts was also analysed by twodimensional electrophoresis. The results demonstrated that treatment caused the reappearance of several glycosylated proteins. The data in vitro showed that GDPMan PLGA NPs have desirable efficacy and warrant further evaluation in a preclinical validation animal model.
Asunto(s)
Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Portadores de Fármacos , Guanosina Difosfato Manosa , Nanopartículas , Fosfotransferasas (Fosfomutasas)/deficiencia , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células Cultivadas , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Fibroblastos , Glicosilación/efectos de los fármacos , Guanosina Difosfato Manosa/química , Guanosina Difosfato Manosa/farmacología , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacologíaRESUMEN
In this paper, is reported the identification of two chimeric patients, a rare finding if sexual abnormalities are absent. However, their chimeric condition is responsible at least for the Silver-Russell phenotype observed in one of the two patients. By single nucleotide polymorphism-array analyses, it was possible to clearly define the mechanism responsible for this unusual finding, underlining the importance of this technique in bringing out the perhaps submerged world of chimeras.
Asunto(s)
Quimerismo , Pruebas Genéticas/métodos , Polimorfismo de Nucleótido Simple , Síndrome de Prader-Willi/genética , Síndrome de Silver-Russell/genética , Niño , Femenino , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Síndrome de Prader-Willi/patología , Síndrome de Silver-Russell/patologíaRESUMEN
Uterine leiomyomas are benign smooth muscle cell tumors that originate from the myometrium. In this study we focus on dysregulated chaperones associated with cell proliferation and apoptosis. Paired tissue samples of 15 leiomyomas and adjacent myometria were obtained and analyzed by two-dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification and western blotting for 2-DE data validation. The values of 6 chaperones were found to be significantly different in the leiomyoma when compared with the myometrium. A total of 4 proteins were upregulated in the leiomyoma and 2 proteins were downregulated. Calreticulin and 78 kDa glucose-regulated protein were further validated by western blotting because the first is considered a marker of cell proliferation, while the second protects against apoptotic cell death. In addition, we also validated the two downregulated proteins heat shock protein ß-1 and heat shock 70 kDa protein 1A. Our study shows the existence of a dysregulation of chaperone proteins associated with leiomyoma development. Functional studies are needed to ascertain the role of these chaperones in the leiomyoma. This may be crucial for the further development of specific inhibitors against the activity of these proteins in order to block the growth of the leiomyoma.
RESUMEN
At present, the most common genetic diagnostic method for chimerism evaluation following hematopoietic stem cell transplantation is microsatellite analysis by capillary electrophoresis. The main objective was to establish, through repeated analysis over time, if a complete chimerism was present, or if the mixed chimerism was stable, increasing or decreasing over time. Considering the recent introduction of next generation sequencing (NGS) in clinical diagnostics, a detailed study evaluating an NGS protocol was conducted, coupled with a custom bioinformatics pipeline, for chimerism quantification. Based on the technology of Ion AmpliSeq, a 44amplicon custom chimerism panel was designed, and a custom bioinformatics pipeline dedicated to the genotyping and quantification of NGS data was coded. The custom chimerism panel allowed identification of an average of 16 informative recipient alleles. The limit of detection of the protocol was fixed at 1% due to the NGS background (<1%). The protocol followed the standard Ion AmpliSeq library preparation and Ion Torrent Personal Genome Machine guidelines. Overall, the present study added to the scientific literature, identifying novel technical details for a possible future application of NGS for chimerism quantification.
Asunto(s)
Quimerismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Adulto , Femenino , Genómica/métodos , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN/métodos , Adulto JovenRESUMEN
Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by twodimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.