Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Chem ; 65(10): 1295-1306, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375477

RESUMEN

BACKGROUND: Many muscular dystrophies currently remain untreatable. Recently, dietary ribitol has been suggested as a treatment for cytidine diphosphate (CDP)-l-ribitol pyrophosphorylase A (CRPPA, ISPD), fukutin (FKTN), and fukutin-related protein (FKRP) myopathy, by raising CDP-ribitol concentrations. Thus, to facilitate fast diagnosis, treatment development, and treatment monitoring, sensitive detection of CDP-ribitol is required. METHODS: An LC-MS method was optimized for CDP-ribitol in human and mice cells and tissues. RESULTS: CDP-ribitol, the product of CRPPA, was detected in all major human and mouse tissues. Moreover, CDP-ribitol concentrations were reduced in fibroblasts and skeletal muscle biopsies from patients with CRPPA myopathy, showing that CDP-ribitol could serve as a diagnostic marker to identify patients with CRPPA with severe Walker-Warburg syndrome and mild limb-girdle muscular dystrophy (LGMD) phenotypes. A screen for potentially therapeutic monosaccharides revealed that ribose, in addition to ribitol, restored CDP-ribitol concentrations and the associated O-glycosylation defect of α-dystroglycan. As the effect occurred in a mutation-dependent manner, we established a CDP-ribitol blood test to facilitate diagnosis and predict individualized treatment response. Ex vivo incubation of blood cells with ribose or ribitol restored CDP-ribitol concentrations in a patient with CRPPA LGMD. CONCLUSIONS: Sensitive detection of CDP-ribitol with LC-MS allows fast diagnosis of patients with severe and mild CRPPA myopathy. Ribose offers a readily testable dietary therapy for CRPPA myopathy, with possible applicability for patients with FKRP and FKTN myopathy. Evaluation of CDP-ribitol in blood is a promising tool for the evaluation and monitoring of dietary therapies for CRPPA myopathy in a patient-specific manner.


Asunto(s)
Monitoreo de Drogas/métodos , Distrofias Musculares/sangre , Distrofias Musculares/tratamiento farmacológico , Azúcares de Nucleósido Difosfato/sangre , Animales , Cromatografía Liquida , Suplementos Dietéticos , Distroglicanos , Femenino , Glicosilación , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Músculo Esquelético/patología , Distrofias Musculares/patología , Mutación , Azúcares de Nucleósido Difosfato/análisis , Nucleotidiltransferasas/genética , Ribitol/farmacología , Ribosa/farmacología
2.
J Inherit Metab Dis ; 42(5): 984-992, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30931530

RESUMEN

The congenital disorders of glycosylation (CDG) are inborn errors of metabolism with a great genetic heterogeneity. Most CDG are caused by defects in the N-glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-mannose (DPM) synthesis remains unexplained. To deepen our understanding of the tissue-specific characteristics of defects in the DPM synthesis pathway, we investigated N-glycosylation and O-mannosylation in skeletal muscle of three DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation of serum transferrin in only two of them. In the three patients, O-mannosylation of alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-dystroglycan (ßDG) N-glycosylation revealed a consistent lack of one N-glycan in skeletal muscle. Recently, defective N-glycosylation of ßDG has been reported in patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B (GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-glycosylation of ßDG in skeletal muscle is indicative of a defect in the DPM synthesis pathway. Further studies should address to what extent hypo-N-glycosylation of ßDG or other skeletal muscle proteins contribute to the phenotype of patients with defects in DPM synthesis. Our findings contribute to our understanding of the tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis pathway.


Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Manosiltransferasas/genética , Proteínas de la Membrana/genética , Distrofias Musculares/diagnóstico , Adulto , Biopsia , Niño , Distroglicanos/genética , Distroglicanos/metabolismo , Femenino , Glicosilación , Humanos , Masculino , Manosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Músculo Esquelético/patología , Mutación , Fenotipo
3.
Am J Physiol Renal Physiol ; 314(2): F230-F239, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29070571

RESUMEN

Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.


Asunto(s)
Antimaníacos/toxicidad , Diabetes Insípida Nefrogénica/inducido químicamente , Glutamina/metabolismo , Glucólisis/efectos de los fármacos , Túbulos Renales Colectores/efectos de los fármacos , Cloruro de Litio/toxicidad , Acetazolamida/farmacología , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Línea Celular , Desoxiglucosa/farmacología , Diabetes Insípida Nefrogénica/genética , Diabetes Insípida Nefrogénica/metabolismo , Diabetes Insípida Nefrogénica/patología , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/patología , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Kidney Int ; 93(1): 128-146, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28843412

RESUMEN

In the syndrome of inappropriate antidiuretic hormone secretion (SIADH), hyponatremia is limited by onset of vasopressin-escape caused by loss of the water channel aquaporin-2 in the renal collecting duct despite high circulating vasopressin. Here, we use the methods of systems biology in a well-established rat model of SIADH to identify signaling pathways activated at the onset of vasopressin-escape. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts of vasopressin-treated rats at 1, 2, and 4 days after initiation of oral water loading in comparison to time-control rats without water loading. The time-dependent mRNA abundance changes were mapped to gene sets associated with curated canonical signaling pathways and revealed evidence of perturbation of transforming growth factor ß signaling and epithelial-to-mesenchymal transition on Day 1 of water loading simultaneous with the initial fall in Aqp2 gene expression. On Day 2 of water loading, transcriptomic changes mapped to Notch signaling and the transition from G0 into the cell cycle but arrest at the G2/M stage. There was no evidence of cell proliferation or altered principal or intercalated cell numbers. Exposure of vasopressin-treated cultured mpkCCD cells to transforming growth factor ß resulted in a virtually complete loss of aquaporin-2. Thus, there is a partial epithelial-to-mesenchymal transition during vasopressin escape with a subsequent shift from quiescence into the cell cycle with eventual arrest and loss of aquaporin-2.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hiponatremia/prevención & control , Síndrome de Secreción Inadecuada de ADH/genética , Túbulos Renales Colectores/metabolismo , ARN Mensajero/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Biología de Sistemas/métodos , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Proliferación Celular/genética , Células Cultivadas , Senescencia Celular/genética , Desamino Arginina Vasopresina , Modelos Animales de Enfermedad , Ingestión de Líquidos , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Hiponatremia/etiología , Hiponatremia/genética , Hiponatremia/metabolismo , Síndrome de Secreción Inadecuada de ADH/inducido químicamente , Síndrome de Secreción Inadecuada de ADH/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores Notch/genética , Receptores Notch/metabolismo , Factores de Tiempo , Transcripción Genética , Transcriptoma , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
5.
Diabetologia ; 60(7): 1304-1313, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28382382

RESUMEN

AIMS/HYPOTHESIS: Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal induced by proinflammatory stimuli. We therefore investigated whether succinate receptor 1 (SUCNR1) could play a role in the development of adipose tissue inflammation and type 2 diabetes. METHODS: Succinate levels were determined in human plasma samples from individuals with type 2 diabetes and non-diabetic participants. Succinate release from adipose tissue explants was studied. Sucnr1 -/- and wild-type (WT) littermate mice were fed a high-fat diet (HFD) or low-fat diet (LFD) for 16 weeks. Serum metabolic variables, adipose tissue inflammation, macrophage migration and glucose tolerance were determined. RESULTS: We show that hypoxia and hyperglycaemia independently drive the release of succinate from mouse adipose tissue (17-fold and up to 18-fold, respectively) and that plasma levels of succinate were higher in participants with type 2 diabetes compared with non-diabetic individuals (+53%; p < 0.01). Sucnr1 -/- mice had significantly reduced numbers of macrophages (0.56 ± 0.07 vs 0.92 ± 0.15 F4/80 cells/adipocytes, p < 0.05) and crown-like structures (0.06 ± 0.02 vs 0.14 ± 0.02, CLS/adipocytes p < 0.01) in adipose tissue and significantly improved glucose tolerance (p < 0.001) compared with WT mice fed an HFD, despite similarly increased body weights. Consistently, macrophages from Sucnr1 -/- mice showed reduced chemotaxis towards medium collected from apoptotic and hypoxic adipocytes (-59%; p < 0.05). CONCLUSIONS/INTERPRETATION: Our results reveal that activation of SUCNR1 in macrophages is important for both infiltration and inflammation of adipose tissue in obesity, and suggest that SUCNR1 is a promising therapeutic target in obesity-induced type 2 diabetes. DATA AVAILABILITY: The dataset generated and analysed during the current study is available in GEO with the accession number GSE64104, www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64104 .


Asunto(s)
Diabetes Mellitus/metabolismo , Inflamación/metabolismo , Macrófagos/citología , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Adulto , Anciano , Animales , Glucemia/metabolismo , Peso Corporal , Movimiento Celular , Quimiotaxis , Ciclo del Ácido Cítrico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/metabolismo , Hipoxia , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
6.
J Am Soc Nephrol ; 27(6): 1587-95, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26577775

RESUMEN

Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.


Asunto(s)
Enfermedades Renales/inducido químicamente , Compuestos de Litio/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Trastorno Bipolar/tratamiento farmacológico , Diabetes Insípida Nefrogénica/inducido químicamente , Modelos Animales de Enfermedad , Humanos , Fallo Renal Crónico/inducido químicamente , Compuestos de Litio/efectos adversos
7.
J Am Soc Nephrol ; 27(7): 2082-91, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26574046

RESUMEN

To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.


Asunto(s)
Acetazolamida/uso terapéutico , Diabetes Insípida Nefrogénica/inducido químicamente , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Diuréticos/uso terapéutico , Compuestos de Litio/efectos adversos , Amilorida/uso terapéutico , Animales , Acuaporina 2/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Inhibidores de los Simportadores del Cloruro de Sodio/uso terapéutico
8.
Pflugers Arch ; 468(9): 1595-607, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364478

RESUMEN

TRPV4 is a polymodal cation channel expressed in osmosensitive neurons of the hypothalamus and in the mammalian nephron. The segmental distribution and role(s) of TRPV4 in osmoregulation remain debated. We investigated the renal distribution pattern of TRPV4 and the functional consequences of its disruption in mouse models. Using qPCR on microdissected segments, immunohistochemistry, and a LacZ reporter mouse, we found that TRPV4 is abundantly expressed in the proximal tubule, the late distal convoluted tubule, and throughout the connecting tubule and collecting duct, including principal and intercalated cells. TRPV4 was undetectable in the glomeruli and thick ascending limb and weakly abundant in the early distal convoluted tubule. Metabolic studies in Trpv4 (+/+) and Trpv4 (-/-) littermates revealed that the lack of TRPV4 did not influence activity, food and water intake, renal function, and urinary concentration at baseline. The mice showed a similar response to furosemide, water loading and deprivation, acid loading, and dietary NaCl restriction. However, Trpv4 (-/-) mice showed a significantly lower vasopressin synthesis and release after water deprivation, with a loss of the positive correlation between plasma osmolality and plasma vasopressin levels, and a delayed water intake upon acute administration of hypertonic saline. Specific activation of TRPV4 in primary cultures of proximal tubule cells increased albumin uptake, whereas no effect of TRPV4 deletion could be observed at baseline. These data reveal that, despite its abundant expression in tubular segments, TRPV4 does not play a major role in the kidney or is efficiently compensated when deleted. Instead, TRPV4 is critical for the release of vasopressin, the sensation of thirst, and the central osmoregulation.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Osmorregulación , Canales Catiónicos TRPV/metabolismo , Vasopresinas/sangre , Albúminas/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Diuréticos/farmacología , Furosemida/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Cloruro de Sodio Dietético/metabolismo , Canales Catiónicos TRPV/genética , Vasopresinas/metabolismo
9.
J Am Soc Nephrol ; 25(3): 501-10, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24408872

RESUMEN

Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder characterized by polyuria and polydipsia. Lithium-induced NDI is caused by aquaporin-2 downregulation and a reduced ratio of principal/intercalated cells, yet lithium induces principal cell proliferation. Here, we studied how lithium-induced principal cell proliferation can lead to a reduced ratio of principal/intercalated cells using two-dimensional and three-dimensional polarized cultures of mouse renal collecting duct cells and mice treated with clinically relevant lithium concentrations. DNA image cytometry and immunoblotting revealed that lithium initiated proliferation of mouse renal collecting duct cells but also increased the G2/S ratio, indicating G2/M phase arrest. In mice, treatment with lithium for 4, 7, 10, or 13 days led to features of NDI and an increase in the number of principal cells expressing PCNA in the papilla. Remarkably, 30%-40% of the PCNA-positive principal cells also expressed pHistone-H3, a late G2/M phase marker detected in approximately 20% of cells during undisturbed proliferation. Our data reveal that lithium treatment initiates proliferation of renal principal cells but that a significant percentage of these cells are arrested in the late G2 phase, which explains the reduced principal/intercalated cell ratio and may identify the molecular pathway underlying the development of lithium-induced renal fibrosis.


Asunto(s)
Antimaníacos/efectos adversos , Diabetes Insípida Nefrogénica/inducido químicamente , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Litio/efectos adversos , Animales , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Diabetes Insípida Nefrogénica/enzimología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo
10.
Physiol Rep ; 6(11): e13734, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29890037

RESUMEN

Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFRcystatin C did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m2 , P = 0.12), whereas eGFRcystatin C was significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m2 , P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P-values < 0.05). In conclusion, acute exercise did barely impact on eGFRcystatin C and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFRcystatin C and increased biomarkers for kidney injury.


Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/orina , Deshidratación/sangre , Deshidratación/orina , Ejercicio Físico , Riñón/fisiología , Lesión Renal Aguda/etiología , Adolescente , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Deshidratación/complicaciones , Tasa de Filtración Glomerular , Humanos , Masculino , Equilibrio Hidroelectrolítico , Adulto Joven
11.
PLoS One ; 12(12): e0189485, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29244860

RESUMEN

Glycogen synthase kinase 3 (GSK3) plays an important role in the development of diabetes mellitus and renal injury. GSK3 inhibition increases glucose uptake in insulin-insensitive muscle and adipose tissue, while it reduces albuminuria and glomerulosclerosis in acute kidney injury. The effect of chronic GSK3 inhibition in diabetic nephropathy is not known. We tested the effect of lithium, the only clinical GSK3 inhibitor, on the development of diabetes mellitus and kidney injury in a mouse model of diabetic nephropathy. Twelve-week old female BTBR-ob/ob mice were treated for 12 weeks with 0, 10 and 40 mmol LiCl/kg after which the development of diabetes and diabetic nephropathy were analysed. In comparison to BTBR-WT mice, ob/ob mice demonstrated elevated bodyweight, increased blood glucose/insulin levels, urinary albumin and immunoglobulin G levels, glomerulosclerosis, reduced nephrin abundance and a damaged proximal tubule brush border. The lithium-10 and -40 diets did not affect body weight and resulted in blood lithium levels of respectively <0.25 mM and 0.48 mM. The Li-40 diet fully rescued the elevated non-fasting blood glucose levels. Importantly, glomerular filtration rate was not affected by lithium, while urine albumin and immunoglobulin G content were further elevated. While lithium did not worsen the glomerulosclerosis, proximal tubule function seemed affected by lithium, as urinary NGAL levels were significantly increased. These results demonstrate that lithium attenuates non-fasting blood glucose levels in diabetic mice, but aggravates urinary albumin and immunoglobulin G content, possibly resulting from proximal tubule dysfunction.


Asunto(s)
Albuminuria/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Hipoglucemiantes/farmacología , Cloruro de Litio/farmacología , Albuminuria/etiología , Animales , Glucemia , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/sangre , Evaluación Preclínica de Medicamentos , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Hipoglucemiantes/uso terapéutico , Riñón/efectos de los fármacos , Riñón/enzimología , Riñón/patología , Cloruro de Litio/uso terapéutico , Ratones Obesos
12.
Physiol Rep ; 5(24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29263119

RESUMEN

Exercise may lead to kidney injury through several mechanisms. Urinary Kidney Injury Molecule-1 (uKIM1) and Neutrophil Gelatinase-Associated Lipocalin (uNGAL) are known biomarkers for acute kidney injury, but their response to repetitive exercise remains unknown. We examined the effects of a single versus repetitive bouts of exercise on markers for kidney injury in a middle-aged population. Sixty subjects (aged 29-78 years, 50% male) were included and walked 30, 40 or 50 km for three consecutive days. At baseline and after exercise day 1 and 3, a urine sample was collected to determine uNGAL and uKIM1. Furthermore, urinary cystatin C, creatinine, and osmolality were used to correct for dehydration-related changes in urinary concentration. Baseline uNGAL was 9.2 (5.2-14.7) ng/mL and increased to 20.7 (11.0-37.2) ng/mL and 14.2(8.0-26.3) ng/mL after day 1 and day 3, respectively, (P ≤ 0.001). Baseline uKIM1 concentration was 2.6 (1.4-6.0) ng/mL and increased to 5.2 (2.4-9.1) ng/mL (P = 0.002) after day 1, whereas uKIM1 was not different from baseline at day 3 (2.9 [1.4-6.4] ng/mL (P = 0.52)). Furthermore, both uNGAL and uKIM1 levels were higher after day 1 compared to day 3 (P < 0.01). When corrected for urinary cystatin C, creatinine, and osmolality, uNGAL demonstrated a similar response compared to the uncorrected data, whereas differences in uKIM1 between baseline, day 1 and day 3 (Ptime = 0.63) were no longer observed for cystatin C and creatinine corrected data. A single bout of prolonged exercise significantly increased uNGAL concentration, whereas no changes in uKIM1 were found. Repetitive bouts of exercise show that there is no cumulative effect of kidney injury markers.


Asunto(s)
Lesión Renal Aguda/orina , Molécula 1 de Adhesión Celular/orina , Lipocalinas/orina , Acondicionamiento Físico Humano/métodos , Adulto , Anciano , Biomarcadores/orina , Cistatina C/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Acondicionamiento Físico Humano/efectos adversos , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA