Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(40): 11148-11151, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647884

RESUMEN

Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3 Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ∼1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.

2.
Nano Lett ; 17(5): 2796-2801, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28368120

RESUMEN

It has recently been shown that the metal-insulator transition in vanadium dioxide epitaxial films can be suppressed and the material made metallic to low temperatures by ionic liquid gating due to migration of oxygen. The gating is only possible on certain crystal facets where volume channels along the VO2's rutile c-axis intersect the surface. Here, we fabricate bars with the c-axis in plane and oriented parallel to or perpendicular to the length of the bars. We show that only bars with the c-axis perpendicular to the bars, for which the volume channels are accessible from the sides of the bar, can be metallized by ionic liquid gating. Moreover, we find that bars up to at least 0.5 µm wide can be fully gated, demonstrating the possibility of the electric field induced migration of oxygen over very long distances, ∼5 times longer than previously observed.

3.
Nano Lett ; 16(9): 5475-81, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27479461

RESUMEN

Ionic liquid gating has been shown to metallize initially insulating layers formed from several different oxide materials. Of these vanadium dioxide (VO2) is of especial interest because it itself is metallic at temperatures above its metal-insulator transition. Recent studies have shown that the mechanism of ionic liquid gated induced metallization is entirely distinct from that of the thermally driven metal-insulator transition and is derived from oxygen migration through volume channels along the (001) direction of the rutile structure of VO2. Here we show that it is possible to metallize the entire volume of 10 nm thick layers of VO2 buried under layers of rutile titanium dioxide (TiO2) up to 10 nm thick. Key to this process is the alignment of volume channels in the respective oxide layers, which have the same rutile structure with clamped in-plane lattice constants. The metallization of the VO2 layers is accompanied by large structural expansions of up to ∼6.5% in the out-of-plane direction, but the structure of the TiO2 layer is hardly affected by gating. The TiO2 layers become weakly conducting during the gating process, but in contrast to the VO2 layers, the conductivity disappears on exposure to air. Indeed, even after air exposure, X-ray photoelectron spectroscopy studies show that the VO2 films have a reduced oxygen content after metallization. Ionic liquid gating of the VO2 films through initially insulating TiO2 layers is not consistent with conventional models that have assumed the gate induced carriers are of electrostatic origin.

4.
Dalton Trans ; 52(5): 1433-1440, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36645002

RESUMEN

Al-Pt compounds have been systematically studied as electrocatalysts for the oxygen evolution reaction (OER). Considering the harsh oxidative conditions of the OER, all Al-Pt compounds undergo modifications during electrochemical experiments. However, the degree of changes strongly depends on the composition and crystal structure of a compound. In contrast to Al-rich compounds (Al4Pt and Al21Pt8), which reveal strong leaching of aluminum, changes in other compounds (Al2Pt, Al3Pt2, rt-AlPt, Al3Pt5, and rt-AlPt3) take place only on the surface or in the near-surface region. Furthermore, surface modification leads to a change in the electronic structure of Pt, giving rise to the in situ formation of catalytically more active surfaces, which are composed of intermetallic compounds, Pt-rich AlxPt1-x phases and Pt oxides. Forming a compromise between sufficient OER activity and stability, Al2Pt and Al3Pt2 can be considered as precursors for OER electrocatalysts.

5.
Adv Mater ; 28(26): 5284-92, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27159503

RESUMEN

Reversible metallization of band and Mott insulators by ionic-liquid gating is accompanied by significant structural changes. A change in conductivity of seven orders of magnitude at room temperature is found in epitaxial films of WO3 with an associated monoclinic-to-cubic structural reorganization. The migration of oxygen ions along open volume channels is the underlying mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA