Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochem J ; 431(2): 245-55, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20704563

RESUMEN

S6K1 (p70 ribosomal S6 kinase 1) is activated by insulin and growth factors via the PI3K (phosphoinositide 3-kinase) and mTOR (mammalian target of rapamycin) signalling pathways. S6K1 regulates numerous processes, such as protein synthesis, growth, proliferation and longevity, and its inhibition has been proposed as a strategy for the treatment of cancer and insulin resistance. In the present paper we describe a novel cell-permeable inhibitor of S6K1, PF-4708671, which specifically inhibits the S6K1 isoform with a Ki of 20 nM and IC50 of 160 nM. PF-4708671 prevents the S6K1-mediated phosphorylation of S6 protein in response to IGF-1 (insulin-like growth factor 1), while having no effect upon the PMA-induced phosphorylation of substrates of the highly related RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated kinase) kinases. PF-4708671 was also found to induce phosphorylation of the T-loop and hydrophobic motif of S6K1, an effect that is dependent upon mTORC1 (mTOR complex 1). PF-4708671 is the first S6K1-specific inhibitor to be reported and will be a useful tool for delineating S6K1-specific roles downstream of mTOR.


Asunto(s)
Imidazoles/farmacología , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Línea Celular , Humanos , Imidazoles/química , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Piperazinas/química , Inhibidores de Proteínas Quinasas/química , Proteínas , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo
2.
Mol Cancer Ther ; 6(12 Pt 1): 3314-22, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18089725

RESUMEN

A t(2;5) chromosomal translocation resulting in expression of an oncogenic kinase fusion protein known as nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) has been implicated in the pathogenesis of anaplastic large-cell lymphoma (ALCL). PF-2341066 was recently identified as a p.o. bioavailable, small-molecule inhibitor of the catalytic activity of c-Met kinase and the NPM-ALK fusion protein. PF-2341066 also potently inhibited NPM-ALK phosphorylation in Karpas299 or SU-DHL-1 ALCL cells (mean IC(50) value, 24 nmol/L). In biochemical and cellular screens, PF-2341066 was shown to be selective for c-Met and ALK at pharmacologically relevant concentrations across a panel of >120 diverse kinases. PF-2341066 potently inhibited cell proliferation, which was associated with G(1)-S-phase cell cycle arrest and induction of apoptosis in ALK-positive ALCL cells (IC(50) values, approximately 30 nmol/L) but not ALK-negative lymphoma cells. The induction of apoptosis was confirmed using terminal deoxyribonucleotide transferase-mediated nick-end labeling and Annexin V staining (IC(50) values, 25-50 nmol/L). P.o. administration of PF-2341066 to severe combined immunodeficient-Beige mice bearing Karpas299 ALCL tumor xenografts resulted in dose-dependent antitumor efficacy with complete regression of all tumors at the 100 mg/kg/d dose within 15 days of initial compound administration. A strong correlation was observed between antitumor response and inhibition of NPM-ALK phosphorylation and induction of apoptosis in tumor tissue. In addition, inhibition of key NPM-ALK signaling mediators, including phospholipase C-gamma, signal transducers and activators of transcription 3, extracellular signal-regulated kinases, and Akt by PF-2341066 were observed at concentrations or dose levels, which correlated with inhibition of NPM-ALK phosphorylation and function. Collectively, these data illustrate the potential clinical utility of inhibitors of NPM-ALK in treatment of patients with ALK-positive ALCL.


Asunto(s)
Antineoplásicos/farmacología , Linfoma Anaplásico de Células Grandes/patología , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Piridinas/farmacología , Quinasa de Linfoma Anaplásico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Crizotinib , Ensayos de Selección de Medicamentos Antitumorales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Ratones , Ratones SCID , Fosforilación , Proteínas Tirosina Quinasas/metabolismo , Pirazoles , Proteínas Tirosina Quinasas Receptoras
3.
Expert Opin Drug Discov ; 3(6): 595-605, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23506143

RESUMEN

BACKGROUND: The number of drugs in active clinical development or on the market that target the unactivated conformational states of protein kinases is growing and represents a significant portion of kinase research at biopharmaceutical companies. These non-classical kinase inhibitors have a mode of action which may overcome some of the liabilities of classical ATP-site inhibitors that substantially overlap the space that ATP occupies in the activated kinase. OBJECTIVE: This review will discuss state-of-the-art methods of inhibiting protein kinases by targeting the unactivated conformations of the enzyme with small molecules directed to the ATP binding region. METHODS: Biochemical and structural biology publications and public domain crystal structures were evaluated to identify key concepts in drug discovery for unactivated protein kinase inhibitors that target the ATP binding region. CONCLUSION: The potential for enhanced selectivity, potency and duration of pharmacological action may allow non-classical kinase therapeutics to be used for chronic dosing in non-life-threatening indications. Moreover, by targeting additional conformational space on the kinase protein it is possible that new chemical matter will be discovered such that current intellectual property limitations on traditional ATP-site chemical scaffolds may be circumvented.

4.
Biochem Biophys Res Commun ; 357(2): 561-6, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17434447

RESUMEN

Assay conditions for the 11beta-hydroxysteroid dehydrogenase have been optimized by adding phospholipids in the media buffer to increase and stabilize the enzymatic activity. The presence of phospholipids greatly facilitates the study of the binding of cortisone and NADPH at the enzyme catalytic site. Kinetic analyses conducted with the human and rabbit enzyme isoforms suggest that both enzymes behave according to an ordered sequential bi-bi mechanism where the NADPH is the first to bind at the active site followed by cortisone. The equilibrium dissociation constant, K(i)a as well as the apparent Michaelis-Menten constants K(m)a, K(m)b, k(cat)a, and k(cat)b for NADPH and cortisone, have been determined to be 147.5 microM, 14.4 microM, 43.8 nM, 0.21 min(-1), and 0.27 min(-1), respectively, for the human enzyme and 41.1 microM, 3.1 microM, 161.7 nM, 0.49 min(-1), and 0.52min(-1), respectively, for the rabbit enzyme.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/química , Animales , Activación Enzimática , Estabilidad de Enzimas , Humanos , Isoenzimas/química , Cinética , Conejos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA