Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(49): 18215-18223, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37994904

RESUMEN

Matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has become a powerful method to extract spatially resolved chemical information in complex materials. This study provides the first use of MALDI-MSI to define spatial-temporal changes in oil paints. Due to the highly heterogeneous nature of oil paints, the sample preparation had to be optimized to prevent molecules from delocalizing. Here, we present a new protocol for the layer-specific analysis of oil paint cross sections achieving a lateral resolution of 10 µm and without losing ionization efficiency due to topographic effects. The efficacy of this method was investigated in oil paint samples containing a mixture of two historic organic pigments, geranium lake and lead white, a mixture often employed in the work of painter Vincent Van Gogh. This methodology not only allows for spatial visualization of the molecules responsible for the pink hue of the paint but also helps to elucidate the chemical changes behind the discoloration of paintings with this composition. The results demonstrate that this approach provides valuable molecular compositional information about the degradation pathways of pigments in specific paint layers and their interaction with the binding medium and other paint components and with light over time. Since a spatial correlation between molecular species and the visual pattern of the discoloration pattern can be made, we expect that mass spectrometry imaging will become highly relevant in future degradation studies of many more historical pigments and paints.

2.
Anal Chem ; 93(44): 14851-14858, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34714624

RESUMEN

The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.


Asunto(s)
Pintura , Pinturas , Colorantes , Isótopos , Espectrometría de Masas
3.
Anal Chem ; 92(6): 4182-4186, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32030986

RESUMEN

An enclosed interface that joins a direct analysis in real time (DART) probe, solid-phase microextraction (SPME) fiber, and the inlet of a high-resolution mass spectrometer is described. Unlike other systems to couple SPME sampling to ambient mass spectrometry, the interface is able to perform discrete analyses on different areas of a single SPME fiber device for up to three technical replicate measurements of one sampling event. Inlet flow speed and desorption temperature are optimized, and reproducibility is demonstrated between replicate analyses on the same derivatized SPME fiber and with sequential fiber sampling events, yielding analyte measurement center of variance (CV) from 3 to 6%. Conditioning is also performed with the enclosed DART. The interface is a straightforward addition to commercially available technologies, and machine diagrams for custom components operated with SPME/DART/MS equipment are included.

4.
Anal Chem ; 91(16): 10856-10863, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31357858

RESUMEN

Eosin is a synthetic organic colorant prone to fading under the influence of light. On the basis of the growing interest in the understanding of the discoloration mechanism of eosin-based lakes, this study compares the ability of two ultrafast and ultrasensitive mass spectrometry techniques to detect eosin derivatives in complex matrices, such as oil media without the use of conventional separation columns or additional sample preparation protocols. Direct analysis in real time mass spectrometry (DART-MS) and direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) were used to characterize the degradation pathway of eosin in oil media. The analysis protocols developed in this study are applied to discern the degradation mechanism of the lake pigment eosin (comprising the molecule per se complexed to an inorganic substrate) dispersed in linseed oil to create an oil paint. The analysis of oil paints by high resolution MS without an extraction methodology that modifies the system chemistry allowed us to identify the degradation forms without causing any additional fragmentation. Both techniques revealed the primary photodegradation pathway of eosin in linseed oil, and DI-ESI-MS provided additional information on the native conformation of the lake.

5.
J Sep Sci ; 37(16): 2215-24, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24910322

RESUMEN

A procedure for multiresidue analysis was developed for the extraction and determination of 17 pesticides, including herbicides, fungicides, and insecticides, as well as certain degradation products, in vineyard soils from La Rioja region (Spain). Different solvents and mixtures were tested in spiked pesticide-free soils, and pesticides were comparatively evaluated by gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. Recoveries >70%, with relative standard deviations <9%, were obtained when a mixture of methanol/acetone or a mixture of methanol/CaCl2 0.01 M for the most polar compounds was selected as the extraction solvent. Method validation was accomplished with acceptable linearity (r(2) ≥ 0.987) within the concentration range of 0.005-1 µg/mL corresponding to 1.667-333.4 µg/kg and 0.835-167.1 µg/kg for liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry, respectively, and detection limits <0.4 µg/kg for the compounds were studied. The extraction method was applied to 17 real vineyard soil samples, and terbuthylazine and its metabolite desethylterbuthylazine were the most ubiquitous compounds, as they were detected in the 100% of the soils analyzed. The presence of fungicides was also high, and the presence of insecticides was lower than other pesticides. The results confirm the usefulness of the optimized procedure for monitoring residues in vineyard soils.


Asunto(s)
Monitoreo del Ambiente/métodos , Residuos de Plaguicidas/análisis , Plaguicidas/química , Suelo/química , Cromatografía de Gases , Cromatografía Liquida , Espectrometría de Masas , Metanol/química , Reproducibilidad de los Resultados , España , Triazinas/análisis , Triazinas/química
6.
J Sep Sci ; 35(24): 3492-500, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23225715

RESUMEN

A reliable multiresidue method based on solid phase extraction was developed using GC-MS to determine and quantify 34 pesticides, including herbicides, fungicides, insecticides, and some of their degradation products, in groundwater in a vineyard region of La Rioja (northern Spain). Different parameters were optimized and good recoveries (65-108% range) and precisions (12-19% range) were achieved with spiked water samples for a concentration of 0.1 µg/L. The experimental results showed an excellent linearity (r(2) > 0.99) over the 0.1-1.5 µg/L range. The detection limits of the proposed method were 1-37 ng/L for most of the compounds studied. The methodology has been successfully applied to the analysis of groundwater samples from vineyard areas in La Rioja and the presence of pesticides, especially fungicides and herbicides, at several concentration levels was revealed. Terbuthylazine, its metabolite desethyl-terbuthylazine, and fluometuron were the pesticides most frequently detected in higher concentrations. Overall and taking into consideration the European Union maximum residue limit of pesticides in groundwater, 16 of the 34 compounds included in this study were detected in concentrations over that limit in at least one of the samples analyzed.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Agua Subterránea/química , Residuos de Plaguicidas/análisis , Vitis , Contaminantes Químicos del Agua/análisis , Límite de Detección , Extracción en Fase Sólida
7.
Environ Sci Pollut Res Int ; 24(36): 27870-27878, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28988335

RESUMEN

Organophosphate esters (OPEs) are ubiquitous contaminants with potentially hazardous effects on both the environment and human health. Knowledge about the soil sorption-desorption process of organic chemicals is important in order to understand their fate, mobility, and bioavailability, enabling an estimation to be made of possible risks to the environment and biota. The aim of this study was to use the batch equilibrium technique to evaluate the sorption-desorption behavior of seven OPEs (TCEP, TCPP, TBEP, TDCP, TBP, TPhP, and EHDP) in soils with distinctive characteristics (two unamended soils and a soil amended with sewage sludge). The equilibrium concentrations of the OPEs were determined by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). All the compounds were sorbed by the soils, and soil organic carbon (OC) played an important role in this process. The sorption of the most soluble OPEs (TCEP, TCPP, and TBEP) depended on soil OC content, although desorption was ≥ 58.1%. The less water-soluble OPEs (TDCP, TBP, TPhP, and EHDP) recorded total sorption (100% for TPhP and EHDP) or very high sorption (≥ 34.9%) by all the soils and were not desorbed, which could be explained by their highly hydrophobic nature, as indicated by the logarithmic octanol/water partition coefficient (Kow) values higher than 3.8, resulting in a high affinity for soil OC. The results of the sorption-desorption of the OPEs by soils with different characteristics highlighted the influence of these compounds' physicochemical properties and the content and nature of soil OC in this process.


Asunto(s)
Ésteres/química , Organofosfatos/química , Contaminantes del Suelo/química , Suelo/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas
8.
Sci Total Environ ; 584-585: 828-837, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131452

RESUMEN

A study has been conducted on the leaching of two fungicides, tebuconazole and cymoxanil, in a soil amended with spent mushroom substrate (SMS), with an evaluation of how different factors influence this process. The objective was based on the potential use of SMS as a biosorbent for immobilizing pesticides in vulnerable soils, and the need to know how it could affect the subsequent transport of these retained compounds. Breakthrough curves (BTCs) for 14C-fungicides, non-incubated and incubated over 30days, were obtained in columns packed with an unamended soil (S), and this soil amended with SMS at rates of 5% (S+SMS5) and 50% (S+SMS50) under saturated and saturated-unsaturated flows. The highest leaching of tebuconazole (>50% of the total 14C added) was found in S when a saturated water flow was applied to the column, but the percentage of leached fungicide decreased when a saturated-unsaturated flow was applied in both SMS-amended soils. Also a significant decrease in leaching was observed for tebuconazole after incubation in the column, especially in S+SMS50 when both flows were applied. Furthermore, cymoxanil leaching was complete in S and S+SMS when a saturated flow was applied, and maximum peak concentrations were reached at 1pore volume (PV), although BTCs showed peaks with lower concentrations in S+SMS. The amounts of cymoxanil retained only increased in S+SMS when a saturated-unsaturated flow was applied. A more relevant effect of SMS for reducing the leaching of fungicide was observed when cymoxanil was previously incubated in the column, although mineralization was enhanced in this case. These results are of interest for extending SMS application on the control of the leaching of fungicides with different physicochemical characteristics after different ageing times in the soil and water flow conditions applied.


Asunto(s)
Agaricales , Fungicidas Industriales/análisis , Contaminantes del Suelo/análisis , Suelo/química , Acetamidas/análisis , Triazoles/análisis , Agua
9.
Sci Total Environ ; 550: 495-503, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26845185

RESUMEN

Physicochemical methods to immobilize pesticides in vulnerable soils are currently being developed to prevent water contamination. Some of these methods include the use of different organic residues to modify soils because they could limit the transport of pesticides and/or facilitate their dissipation. Spent mushroom substrate (SMS) may be used for these purposes. Accordingly a study was conducted under laboratory conditions to know the dissipation and bioavailability of the fungicides cymoxanil and tebuconazole over time in a vineyard soil amended with two rates of spent mushroom substrate (SMS) (5% and 50% (w/w)), selected to prevent the diffuse or point pollution of soil. The dissipation of cymoxanil was more rapid than that of tebuconazole in the different soils studied. The dissipation rate was higher in the amended soil than in the unamended one for both compounds, while no significant differences were observed between the amended soils in either case. An apparent dissipation occurred in the amended soil due to the formation of non-extractable residues. Bound residues increased with incubation time for tebuconazole, although a proportion of this fungicide was bioavailable after 303days. The major proportion of cymoxanil was tightly bound to the amended soil from the start, although an increasing fraction of bound fungicide was bioavailable for mineralization. Soil dehydrogenase activity was significantly affected by SMS application and incubation time; however, it was not significantly modified by fungicide application. The significance of this research suggests that SMS applied at a low or high rate to agricultural soil can be used to prevent both the diffuse or point pollution of soil through the formation of non-extractable residues, although more research is needed to discover the time that fungicides remain adsorbed into the soil decreasing either bioavailability (tebuconazole) or mineralization (cymoxanil) in SMS-amended soils.


Asunto(s)
Acetamidas/análisis , Agaricales/química , Restauración y Remediación Ambiental/métodos , Fungicidas Industriales/análisis , Triazoles/análisis , Agricultura , Suelo/química , Contaminantes del Suelo/análisis
10.
Environ Sci Pollut Res Int ; 23(9): 9192-203, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26832876

RESUMEN

Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds.


Asunto(s)
Plaguicidas/análisis , Contaminantes del Suelo/análisis , Suelo/química , Contaminación del Agua/prevención & control , Adsorción , Agaricales/química , Agricultura , Triazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA