Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diseases ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38248380

RESUMEN

Massive vaccination positively impacted the SARS-CoV-2 pandemic, being a strategy to increase the titers of neutralizing antibodies (NAbs) in the population. Assessing NAb levels and understanding the kinetics of NAb responses is critical for evaluating immune protection. In this study, we optimized and validated a PRNT50 assay to assess 50% virus neutralization and evaluated its accuracy to measure NAbs to the original strain or variant of SARS-CoV-2. The optimal settings were selected, such as the cell (2 × 105 cells/well) and CMC (1.5%) concentrations and the viral input (~60 PFU/well) for PRNT-SARS-CoV-2 with cut-off point = 1.64 log5 based on the ROC curve (AUC = 0.999). The validated PRNT-SARS-CoV-2 assay presented high accuracy with an intraassay precision of 100% for testing samples with different NAb levels (low, medium, and high titers). The method displays high selectivity without cross-reactivity with dengue (DENV), measles (MV), zika (ZIKV), and yellow fever (YFV) viruses. In addition, the standardized PRNT-SARS-CoV-2 assay presented robustness when submitted to controlled variations. The validated PRNT assay was employed to test over 1000 specimens from subjects with positive or negative diagnoses for SARS-CoV-2 infection. Patients with severe COVID-19 exhibited higher levels of NAbs than those presenting mild symptoms for both the Wuhan strain and Omicron. In conclusion, this study provides a detailed description of an optimized and validated PRNT50 assay to monitor immune protection and to subsidize surveillance policies applied to epidemiologic studies of COVID-19.

2.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515173

RESUMEN

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Formación de Anticuerpos , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunización , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Neutralizantes
3.
Viruses ; 14(9)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36146723

RESUMEN

Infections caused by SARS-CoV-2 induce a severe acute respiratory syndrome called COVID-19 and have led to more than six million deaths worldwide. Vaccination is the most effective preventative measure, and cellular and humoral immunity is crucial to developing individual protection. Here, we aim to investigate hybrid immunity against SARS-CoV-2 triggered by the ChAadOx1 nCoV-19 vaccine in a Brazilian cohort. We investigated the immune response from ChAadOx1 nCoV-19 vaccination in naïve (noCOVID-19) and previously infected individuals (COVID-19) by analyzing levels of D-dimers, total IgG, neutralizing antibodies (Nabs), IFN-γ (interferon-γ) secretion, and immunophenotyping of memory lymphocytes. No significant differences in D-dimer levels were observed 7 or 15 days after vaccination (DAV). All vaccinated individuals presented higher levels of total IgG or Nabs with a positive correlation (R = 0.88). Individuals in the COVID-19 group showed higher levels of antibody and memory B cells, with a faster antibody response starting at 7 DAV compared to noCOVID-19 at 15 DAV. Further, ChAadOx1 nCoV-19 vaccination led to enhanced IFN-γ production (15 DAV) and an increase in activated T CD4+ naïve cells in noCOVID-19 individuals in contrast with COVID-19 individuals. Hence, our data support that hybrid immunity triggered by ChAadOx1 nCoV-19 vaccination is associated with enhanced humoral response, together with a balanced cellular response.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G , Interferón gamma , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA