Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Langmuir ; 40(26): 13583-13595, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38907731

RESUMEN

The growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(C18H37) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system. Changes included reduced molecular area and peak pressure in Langmuir adsorption isotherms. Small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) analyses provided insights into the LP's structural organization within the membrane and its interaction with glyphosate (PNG). Structural and geometric parameters, as derived from in silico molecular dynamics simulations (MD), substantiated the impact of LP on the monolayer structure and the interaction with PNG. Notably, the presence of the LP and glyphosate increased charge transfer resistance, indicating strong adherence of the monolayer to the indium tin oxide (ITO) surface and effective pesticide interaction. A calibration curve for glyphosate concentration adjustment revealed a detection limit (LOD) of 24 nmol L-1, showcasing the high sensitivity of this electrochemical biosensor. This LOD is significantly lower than that of a similar colorimetric biosensor in aqueous media with a detection limit of approximately 0.3 µmol L-1. Such an improvement in sensitivity likely stems from adding a polar residue to the amino acid chain of the LP.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Glicina , Glifosato , Lipopéptidos , Simulación de Dinámica Molecular , Glicina/química , Glicina/análogos & derivados , Glicina/análisis , 1,2-Dipalmitoilfosfatidilcolina/química , Lipopéptidos/química , Lipopéptidos/análisis , Agua/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Propiedades de Superficie
2.
Langmuir ; 38(11): 3434-3445, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35274959

RESUMEN

Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.


Asunto(s)
Hidrogeles , Nanoestructuras , Amiloide , Animales , Células HeLa , Humanos , Hidrogeles/química , Ratones , Morfogénesis , Células 3T3 NIH , Nanoestructuras/toxicidad , Péptidos/química , Agua
3.
Phys Chem Chem Phys ; 23(18): 10953-10963, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33913458

RESUMEN

Four amphiphilic peptides were synthesized, characterized, and evaluated regarding their efficiency in the catalysis of direct aldol reactions in water. The lipopeptides differ by having a double lipid chain and a guanidinium pyrrole group functionalizing one Lys side chain. All the samples are composed of the amino acids l-proline (P), l-arginine (R), or l-lysine (K) functionalized with the cationic guanidiniocarbonyl pyrrole unit (GCP), l-tryptophan (W), and l-glycine (G), covalently linked to one or two long aliphatic chains, leading to surfactant-like designs with controlled proline protonation state and different stereoselectivity. Critical aggregation concentrations (cac) were higher in the presence of the GCP group, suggesting that self-assembly depends on charge distribution along the peptide backbone. Cryogenic Transmission Electron Microscopy (Cryo-TEM) and Small Angle X-ray Scattering (SAXS) showed a rich polymorphism including spherical, cylindrical, and bilayer structures. Molecular dynamics simulations performed to assess the lipopeptide polymorphs revealed an excellent agreement with core-shell arrangements derived from SAXS data and provided an atomistic view of the changes incurred by modifying head groups and lipid chains. The resulting nanostructures behaved as excellent catalysts for aldol condensation reactions, in which superior conversions (>99%), high diastereoselectivities (ds = 94 : 6), and enantioselectivities (ee = 92%) were obtained. Our findings contribute to elucidate the effect of nanoscale organization of lipopeptide assemblies in the catalysis of aldol reactions in an aqueous environment.


Asunto(s)
Aldehídos/química , Lipopéptidos/química , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , Conformación Molecular , Simulación de Dinámica Molecular , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Agua/química , Difracción de Rayos X
4.
Molecules ; 26(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525730

RESUMEN

The covalent and noncovalent association of self-assembling peptides and tetrapyrroles was explored as a way to generate systems that mimic Nature's functional supramolecular structures. Different types of peptides spontaneously assemble with porphyrins, phthalocyanines, or corroles to give long-range ordered architectures, whose structure is determined by the features of both components. The regular morphology and ordered molecular arrangement of these systems enhance the photochemical properties of embedded chromophores, allowing applications as photo-catalysts, antennas for dye-sensitized solar cells, biosensors, and agents for light-triggered therapies. Chemical modifications of peptide and tetrapyrrole structures and control over the assembly process can steer the organization and influence the properties of the resulting system. Here we provide a review of the field, focusing on the assemblies obtained from different classes of self-assembling peptides with tetrapyrroles, their morphologies and their applications as innovative functional materials.


Asunto(s)
Péptidos/química , Tetrapirroles/química , Indoles/química , Isoindoles , Fotoquímica/métodos , Porfirinas/química
5.
Chemphyschem ; 21(6): 476-483, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31943643

RESUMEN

Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.

6.
Langmuir ; 36(48): 14793-14801, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33210929

RESUMEN

The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted ß-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Péptidos , Adsorción , Amiloide , Membrana Dobles de Lípidos , Péptidos/toxicidad , Termodinámica
7.
Langmuir ; 36(11): 2767-2774, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32131599

RESUMEN

Morphological, spectroscopic, and scattering studies of the self-assembly and aggregation of mixtures of [RF]4 and P[RF]4 peptides (where R = arginine; F = phenylalanine; P = proline), in solution and as hydrogels, were performed to obtain information about polymorphism. CD data confirmed a ß-sheet secondary structure in aqueous solution, and TEM images revealed nanofibers with diameters of ∼10 nm and micrometer lengths. SAXS curves were fitted using a mass fractal-component and a long cylinder shell form factor for the liquid samples, and only a long cylinder shell form factor for the gels. Increasing the P[RF]4 content in the systems leads to a reduction in cylinder radius and core scattering density, suggesting an increase in packing of the peptide molecules; however, the opposite effect is observed for the gels, where the scattering density is higher in the shell for the systems containing higher P[RF]4 content. These compounds show potential as catalysts in the asymmetric aldol reactions, with cyclohexanone and p-nitrobenzaldehyde in aqueous media. A moderate conversion (36.9%) and a good stereoselectivity (69:31) were observed for the system containing only [RF]4. With increasing P[RF]4 content, a considerable decrease of the conversion was observed, suggesting differences in the self-assembly and packing factor. Rheological measurements were performed to determine the shear moduli for the soft gels.

8.
Soft Matter ; 16(19): 4615-4624, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32368775

RESUMEN

The self-assembly of model [P]RWG lipopeptides (P: l-proline, R: l-arginine, W: l-tryptophan, G: l-glycine), containing one or two aliphatic octadecyl (C18) chains in water and cyclohexanone/water solutions was examined. The self-assembly of mixtures of these RWG and PRWG lipopeptides was also investigated. These materials presented a similar critical aggregation concentration of ∼4.0 × 10-4 wt% and were characterized by unordered secondary structures with some ß-sheet content. TEM and cryo-TEM revealed the presence of mainly nanotape structures with micelles observed for systems rich in PRWG(C18H37). Analysis of detailed SAXS form factor measurements revealed the presence of bilayers 3-4 nm thick while the PRWG(C18H37) micelles have a core radius of approximately 3 nm, and a shell thickness of 2 nm. For the cyclohexanone/water systems polymorphs containing cluster aggregates (with radius of 0.25 nm to 0.50 nm) and some elongated structures (with radius of 5.7 nm to 26.1 nm) were seen. Longer structures were formed with the increase of the proline-containing lipopeptide content. The catalytic activity of these peptides was assessed using a model nitro-aldol reaction. The concentration of water in the reaction system influenced the conversion, higher content promoted better efficiency for the water systems, but the opposite was observed for the cyclohexanone/water samples.


Asunto(s)
Lipopéptidos/química , Prolina/química , Catálisis , Dicroismo Circular , Ciclohexanonas/química , Micelas , Microscopía Electrónica de Transmisión , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Agua/química , Difracción de Rayos X
9.
Soft Matter ; 16(20): 4746-4755, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32329496

RESUMEN

Penetratin is a short Trojan peptide that attracts great interest in biomedical research for its capacity to translocate biological membranes. Herein, we study in detail both self-assembly and intracellular delivery of DNA by the heptamer KIWFQNR, a truncated peptide derived from Penetratin. This shortened sequence possesses a unique design with bolaamphiphilic characteristics that preserves the longest noncationic amino acid portion found in Penetratin. These features convey amphipathicity to assist self-assembly and make it a suitable model for exploring the role of hydrophobic residues for peptide interaction and cell uptake. We show that the fragment forms peptiplexes (i.e., peptide-DNA complexes), and aggregates into long nanofibers with clear ß-sheet signature. The supramolecular structure of nanofibers is likely composed of DNA cores surrounded by a peptide shell to which the double helix behaves as a template and induces fibrillization. A nucleation and growth mechanism proceeding through liquid-liquid phase separation of coacervates is proposed for describing the self-assembly of peptiplexes. We also demonstrate that peptiplexes deliver double-stranded 200 bp DNA into HeLa cells, indicating its potential for preparing non-viral vectors for oligonucleotides through noncovalent strategies. Since the main structural features of native Penetratin are conserved in this simpler fragment, our findings also highlight the role of uncharged amino acids for structuration, and thus for the ability of Penetratin to cross cell membranes.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , ADN/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Péptidos de Penetración Celular/química , Citosol/metabolismo , ADN/química , Endocitosis , Células HeLa , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química
10.
Biopolymers ; 110(2): e23245, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30548859

RESUMEN

In this study, we prepared translucid hydrogels with different concentrations of silk fibroin, extracted from raw silk fibers, and used them as a matrix to incorporate the photosensitizer 5-(4-aminophenyl)-10,15,20-tris-(4-sulphonatophenyl) porphyrin trisodium for application in photodynamic therapy (PDT). The hydrogels obtained were characterized by rheology, spectrophotometry, and scattering techniques to elucidate the factors involved in the formation of the hydrogel, and to characterize the behavior of silk fibroin (SF) after incorporating of the porphyrin to the matrix. The rheology results demonstrated that the SF hydrogels had a shear thinning behavior. In addition, we were able to verify that the structure of the material was able to be recovered over time after shear deformation. The encapsulation of porphyrins in hydrogels leads to the formation of self-assembled peptide nanostructures that prevent porphyrin aggregation, thereby greatly increasing the generation of singlet oxygen. Also, our findings suggest that porphyrin can diffuse out of the hydrogel and permeate the outer skin layers. This evidence suggests that SF hydrogels could be used as porphyrin encapsulation and as a drug carrier for the sustained release of photosensitizers for PDT.


Asunto(s)
Fibroínas/química , Hidrogeles/química , Dicroismo Circular , Portadores de Fármacos/química , Luz , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Reología , Oxígeno Singlete/metabolismo
11.
J Pept Sci ; 25(6): e3170, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31006946

RESUMEN

Glutamic acid-rich peptides are crucial to a variety of biological processes, including glutamatergic neurotransmission and immunological defense. Glutamic acid sequences often exhibit unusual organization into ß2 -type sheets, where bifurcated H bonds formed between glutamic acid side chains and NH in amide bonds on adjacent ß-strands play a paramount role for stabilizing the molecular assembly. Herein, we investigate the self-assembly and supramolecular structure of simplified models consisting of alternating glutamic acid/phenylalanine residues. Small-angle X-ray scattering and atomic force microscopy show that the aggregation pathway is characterized by the formation of small oligomers, followed by coalescence into nanofibrils and nanotapes. Amyloidogenic features are further demonstrated through fiber X-ray diffraction, which reveal molecular packing according to cross-ß patterns, where ß-strands appear perpendicularly oriented to the long axis of nanofibrils and nanotapes. Nanoscale infrared spectroscopy from individual nanoparticles on dried samples shows a remarkable decrease of ß2 -sheet content, accompanied by growth of standard ß-sheet fractions, indicating a ß2 -to-ß1 transition as a consequence of the release of solvent from the interstices of peptide assemblies. Our findings highlight the key role played by water molecules in mediating H-bond formation in ß2 -sheets commonly found in amyloidogenic glutamic acid-rich aggregates.


Asunto(s)
Amiloide/química , Ácido Glutámico/química , Nanoestructuras/química , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación Proteica en Lámina beta , Dispersión del Ángulo Pequeño , Difracción de Rayos X
12.
J Nanosci Nanotechnol ; 18(7): 4551-4558, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442631

RESUMEN

This work describes the electro polymerization of a poly-L-arginine film onto boron-doped diamond (BDD) electrode and glassy carbon electrode (GCE) surfaces. The morphological and electrochemical properties of the modified electrodes were studied by atomic force microscopy and electrochemical methods, and their potential for terbutaline sulfate (TBS) detection was determined by voltammetry and chronoamperometry techniques. Our results demonstrate that the electrochemical surface area of both uncoated-bare electrodes (GCE e BDD) did not have significant differences in performance. However, higher current observed for TBS at poly-arginine/GCE is probably due to the higher surface coverage poly-arginine at GCE than BDD. It was concluded that for the systems under study, the poly-L-arginine/GCE was more suitable for TBS detection than that by the poly-L-arginine/BDD electrode, due to the more continuous and thicker poly-L-arginine film formed on the GCE, as revealed by the microscopy images. The TBS sensitivity and detection limit of the poly-L-arginine/GCE were determined to be 0.9 ±0.1 µA µmol-1L cm-2 and 0.10 µmol L-1, respectively, by chronoamperometry. Furthermore, the abilities of the electrodes to detect other ß-agonists, namely clenbuterol and salbutamol, were studied by performing electrochemical experiments in the presence of these analytes. The results suggest that this film is a promising material for TBS detection due to high-surface-area electrochemical electrodes, and for the electrostatically-controlled thin film interference filter.

13.
Phys Chem Chem Phys ; 19(4): 3084-3093, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28079210

RESUMEN

Self-assembled l,l-diphenylalanine (FF) peptide micro/nanotubes represent a class of biomimetic materials with a non-centrosymmetric crystal structure and strong piezoelectricity. The peptide nanotubes synthesized by a liquid phase method yield tube lengths in the hundreds of micron range, inner diameters in the few hundred nanometer range, and outer diameters in the 5-15 µm range. Second harmonic generation (SHG) polarimetry from individual self-assembled FF nanotubes is used to obtain the nonlinear (NLO) optical coefficients as a function of the tube diameter and thermal treatment. The ratio of the shear to the longitudinal component (d15/d33) of the NLO coefficient increases with the diameter of the tubes. One of the transverse components of the nonlinear coefficient is found to be negative, and its magnitude with respect to the longitudinal component increases with the tube diameter. Thermal treatment of individual FF tubes has a similar effect upon increasing the diameter of the tubes in SHG polarimetry. Concurrent Raman scattering measurements from individual FF tubes show a distinct change in the low frequency (100 cm-1) region with the diameter of the tubes reflecting subtle effects of water.


Asunto(s)
Materiales Biomiméticos/química , Nanotubos de Péptidos/química , Calor , Espectrometría Raman , Agua/química
14.
J Chem Phys ; 147(8): 084703, 2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28863534

RESUMEN

Enhancing Raman signatures of molecules by self-assembled metal nanoparticles, nanolithography patterning, or by designing plasmonic nanostructures is widely used for detection of low abundance biological systems. Self-assembled peptide nanostructures provide a natural template for tethering Au and Ag nanoparticles due to its fractal surface. Here, we show the use of L,L-diphenylalanine micro-nanostructures (FF-MNSs) for the organization of Ag and Au nanoparticles (Nps) and its potential as surface-enhanced Raman scattering (SERS)-active substrates. The FF-MNSs undergo an irreversible phase transition from hexagonally packed (hex) micro-nanotubes to an orthorhombic (ort) structure at ∼150 °C. The metal Nps form chains on hex FF-MNSs as inferred from transmission electron microscopy images and a uniform non-aggregated distribution in the ort phase. The high luminescence from the ort FF-MNS phase precludes SERS measurements with AgNps. The calculated Raman spectra using density-functional theory shows a higher intensity from rhodamine 6G (R6G) molecule in the presence of an Ag atom bound to ort FF compared with hex FF. The SERS spectra obtained from R6G bound to FF-MNSs with AuNps clearly show a higher enhancement for the ort phase compared with hex FF, corroborating our theoretical calculations. Our results indicate that FF-MNSs both in the hex and ort phases can be used as substrates for the SERS analysis with different metal nanoparticles, opening up a novel class of optically active bio-based substrates.

15.
Soft Matter ; 12(45): 9158-9169, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27714346

RESUMEN

We describe in depth the structure of complexes formed between DNA and two classes of arginine-containing peptide amphiphiles, namely, the lipopeptide PRW-C16 (P = proline, R = arginine, W = tryptophan, C16 = C16 : 0 alkyl chain) and the bolaamphiphile RFL4FR (R = arginine, F = phenylalanine, L = leucine). A combination of X-ray and neutron scattering provided unprecedented insights into the local structure of these complexes. Lipopeptide-based complexes self-assembled into layered structures with large-scale fractal features, hosting DNA in the interstices. Bola-amphiphile scaffolds were characterized by planar structures with DNA strands presumably sandwiched in-between peptide nanotapes. Importantly, complexation did not affect the structural integrity of DNA in either of the two complexes. The bolaamphiphile conjugates displayed high levels of molecular ordering in contrast to the liquid-crystalline features observed in lipopeptide assemblies. Peptide-DNA complexes were assessed for their potential as a means to deliver the reporter vector pEGFP-N1 into SW480 human colon carcinoma cells. Successfully transfected cells expressed green fluorescent protein. The potentiating effect of PRW-C16 on the cellular uptake of ectopic DNA was found to be much greater than that observed with RFL4FR. In contrast to the bolaamphiphile-based conjugate, the liquid-crystalline nature of the lipopeptide complex is likely to play a key role in DNA release and transfection efficiency since these weakly bound structures require lower energy expenditure during disassembly and load release.


Asunto(s)
Arginina/química , ADN/química , Vectores Genéticos/química , Péptidos/química , Transfección , Línea Celular Tumoral , Proteínas Fluorescentes Verdes , Humanos
16.
Langmuir ; 31(15): 4513-23, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25823528

RESUMEN

A model octapeptide peptide consisting of an alternating sequence of arginine (Arg) and phenylalanine (Phe) residues, namely, [Arg-Phe]4, was prepared, and its self-assembly in solution studied. The simple alternating [Arg-Phe]4 peptide sequence allows for unique insights into the aggregation process and the structure of the self-assembled motifs. Fluorescence and UV-vis assays were used to determine critical aggregation concentrations, corresponding to the formation of oligomeric species and ß-sheet rich structures organized into both spheroidal aggregates and highly ordered fibrils. Electron and atomic force microscopy images show globular aggregates and long unbranched fibers with diameters ranging from ∼4 nm up to ∼40 nm. Infrared and circular dichroism spectroscopy show the formation of ß-sheet structures. X-ray diffraction on oriented stalks show that the peptide fibers have an internal lamellar structure, with an orthorhombic unit cell with parameters a ∼ 27.6 Å, b ∼ 9.7 Å, and c ∼ 9.6 Å. In situ small-angle X-ray scattering (SAXS) shows the presence of low molecular weight oligomers in equilibrium with mature fibers which are likely made up from 5 or 6 intertwined protofilaments. Finally, weak gel solutions are probed under gentle shear, suggesting the ability of these arginine-rich fibers to form networks.


Asunto(s)
Arginina/química , Oligopéptidos/química , Fenilalanina/química , Geles , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Agregado de Proteínas , Estructura Secundaria de Proteína , Soluciones
17.
J Pept Sci ; 20(7): 554-62, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24845629

RESUMEN

Hybrid associates formed between peptide assemblies and fluorophores are attractive mainly because of their unique properties for biomedical applications. Recently, we demonstrated that the production of reactive oxygen species (ROS) by hypericin and their stability in excited states are enhanced upon conjugation with l,l-diphenylalanine microtubes (FF-MNTs). Although the detailed mechanisms responsible for improving the photophysical properties of ROS remain unclear, tentative hypotheses have suggested that the driving force is the growth of overall dipolar moments ascribed either to coupling between aligned H2O dipoles within the ordered structures or to the organization of hypericin molecules on peptide interfaces. To provide new insights on ROS activity in hypericin/FF-MNTs hybrids and further explore the role of water in this respect, we present results obtained from investigations on the behavior of these complexes organized into different crystalline arrangements. Specifically, we monitored and compared the photophysical performance of hypericin bound to FF-MNTs with peptides organized in both hexagonal (water-rich) and orthorhombic (water-free) symmetries. From a theoretical perspective, we present the results of new molecular dynamics simulations that highlight the distinct hypericin/peptide interaction at the interface of FF-MNTs for the different symmetries. As a conclusion, we propose that although water enhances photophysical properties, the organization induced by peptide structures and the availability of a hydrophobic environment surrounding the hypericin/peptide interface are paramount to optimizing ROS generation. The findings presented here provide useful basic research insights for designing peptide/fluorophore complexes with outstanding technological potential.


Asunto(s)
Péptidos/química , Perileno/análogos & derivados , Especies Reactivas de Oxígeno/química , Agua/química , Antracenos , Benzofuranos/química , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación de Dinámica Molecular , Oxidación-Reducción , Perileno/química , Difracción de Rayos X
18.
Adv Healthc Mater ; 13(11): e2303509, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38245830

RESUMEN

Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Técnicas Electroquímicas , SARS-CoV-2 , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Humanos , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/sangre , Electrodos , Anticuerpos Antivirales/sangre , Oro/química , Inmunoensayo/métodos , Inmunoensayo/instrumentación
19.
Langmuir ; 29(32): 10205-12, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23879638

RESUMEN

Microtubes obtained from the self-assembly of L-diphenylalanine (FF-MTs) were evaluated as potential vehicles for drug delivery. The biological marker Rhodamine B (RhB) was chosen as a model drug and conjugated to the peptide arrays during self-organization in the liquid phase. Microscopy and X-ray studies were performed to provide morphological and structural information. The data revealed that the cargo was distributed either in small aggregates at the hydrophobic surface of the FF-MTs or homogeneously embedded in the structure, presumably anchored at polar sites in the matrix. Raman spectroscopy revealed notable shifts of the characteristic RhB resonance peaks, demonstrating the successful conjugation of the fluorophore and peptide assemblies. In vitro assays were conducted in erythrocytes and fibroblast cells. Interestingly, FF-MTs were found to modulate the release of the load. The release of RhB from the FF-MTs followed first-order kinetics with a steady-state profile, demonstrating the potential of these carriers to deliver drugs at constant rates in the body. Cytotoxicity investigations revealed high cell viability up to concentrations of 5 mg mL(-1), demonstrating the low toxicity of the FF-MTs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Eritrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fenilalanina/análogos & derivados , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Dipéptidos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/efectos adversos , Cinética , Masculino , Ratones , Modelos Moleculares , Tamaño de la Partícula , Fenilalanina/efectos adversos , Fenilalanina/química , Fenilalanina/farmacocinética , Fenilalanina/farmacología , Ratas Wistar , Estereoisomerismo , Relación Estructura-Actividad , Propiedades de Superficie
20.
Int J Pharm ; 646: 123420, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37778514

RESUMEN

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.


Asunto(s)
Antineoplásicos , Venenos de Crotálidos , Melanoma , Animales , Ratones , Modelos Animales de Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/química , Venenos de Crotálidos/química , Venenos de Crotálidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA