Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(9): 2024-2041.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34473957

RESUMEN

Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections. We utilized the cecal ligation and puncture (CLP) model of sepsis and subsequent infection to assess the role of adenosine in post-sepsis immune suppression. A2aR-deficient mice showed improved resistance to post-sepsis infections. Sepsis expanded a subset of CD39hi B cells and elevated extracellular adenosine, which was absent in mice lacking CD39-expressing B cells. Sepsis-surviving B cell-deficient mice were more resistant to secondary infections. Mechanistically, metabolic reprogramming of septic B cells increased production of ATP, which was converted into adenosine by CD39 on plasmablasts. Adenosine signaling via A2aR impaired macrophage bactericidal activity and enhanced interleukin-10 production. Septic individuals exhibited expanded CD39hi plasmablasts and adenosine accumulation. Our study reveals CD39hi plasmablasts and adenosine as important drivers of sepsis-induced immunosuppression with relevance in human disease.


Asunto(s)
Adenosina/inmunología , Antígenos CD/inmunología , Apirasa/inmunología , Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Células Plasmáticas/inmunología , Sepsis/inmunología , Adenosina/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Reprogramación Celular/inmunología , Macrófagos/metabolismo , Ratones , Células Plasmáticas/metabolismo , Receptor de Adenosina A2A/inmunología , Receptor de Adenosina A2A/metabolismo , Sepsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443169

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction and severe morbidity. Cigarette smoking (CS) can exacerbate the incidence and severity of RA. Although Th17 cells and the Aryl hydrocarbon receptor (AhR) have been implicated, the mechanism by which CS induces RA development remains unclear. Here, using transcriptomic analysis, we show that microRNA-132 is specifically induced in Th17 cells in the presence of either AhR agonist or CS-enriched medium. miRNA-132 thus induced is packaged into extracellular vesicles produced by Th17 and acts as a proinflammatory mediator increasing osteoclastogenesis through the down-regulation of COX2. In vivo, articular knockdown of miR-132 in murine arthritis models reduces the number of osteoclasts in the joints. Clinically, RA patients express higher levels of miR-132 than do healthy individuals. This increase is further elevated by cigarette smoking. Together, these results reveal a hitherto unrecognized mechanism by which CS could exacerbate RA and further advance understanding of the impact of environmental factors on the pathogenesis of chronic inflammatory diseases.


Asunto(s)
Artritis Reumatoide/genética , MicroARNs/genética , Osteogénesis/fisiología , Adulto , Anciano , Animales , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fumar Cigarrillos/efectos adversos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Persona de Mediana Edad , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Humo , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Contaminación por Humo de Tabaco/efectos adversos
3.
Cell Tissue Bank ; 25(1): 187-194, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37145371

RESUMEN

Primary cell cultures are essential tools for elucidating the physiopathological mechanisms of the cardiovascular system. Therefore, a primary culture growth protocol of cardiovascular smooth muscle cells (VSMCs) obtained from human abdominal aortas was standardized. Ten abdominal aorta samples were obtained from patients diagnosed with brain death who were organ and tissue donors with family consent. After surgical ablation to capture the aorta, the aortic tissue was removed, immersed in a Custodiol® solution, and kept between 2 and 8 °C. In the laboratory, in a sterile environment, the tissue was fragmented and incubated in culture plates containing an enriched culture medium (DMEM/G/10% fetal bovine serum, L-glutamine, antibiotics and antifungals) and kept in an oven at 37 °C and 5% CO2. The aorta was removed after 24 h of incubation, and the culture medium was changed every six days for twenty days. Cell growth was confirmed through morphological analysis using an inverted optical microscope (Nikon®) and immunofluorescence for smooth muscle alpha-actin and nuclei. The development of the VSMCs was observed, and from the twelfth day, differentiation, long cytoplasmic projections, and adjacent cell connections occurred. On the twentieth day, the morphology of the VSMCs was confirmed by actin fiber immunofluorescence, which is a typical characteristic of VSMCs. The standardization allowed VSMC growth and the replicability of the in vitro test, providing a protocol that mimics natural physiological environments for a better understanding of the cardiovascular system. Its use is intended for investigation, tissue bioengineering, and pharmacological treatments.


Asunto(s)
Aorta Abdominal , Enfermedades Vasculares , Humanos , Muerte Encefálica/metabolismo , Muerte Encefálica/patología , Músculo Liso Vascular/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Modelos Teóricos , Miocitos del Músculo Liso , Encéfalo , Células Cultivadas
4.
J Infect Dis ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015657

RESUMEN

BACKGROUND: The inflammation in the lungs and other vital organs in COVID-19 are characterized by the presence of neutrophils and high concentration of neutrophil extracellular traps (NETs), which also seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells, and what the consequence of NETs degradation in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS: Here, by immunofluorescence microscopy we observed that viral particles co-localize with NETs in neutrophils isolated from COVID-19 patients or from healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 h of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice we observed a higher viral load in animals treated with DNase I. On the other hand, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSION: Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.

5.
Clin Immunol ; 257: 109836, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37951516

RESUMEN

BACKGROUND: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS: K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS: Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION: This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Neutrófilos , Enoxaparina/farmacología , SARS-CoV-2
6.
PLoS Pathog ; 17(5): e1009597, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989349

RESUMEN

Macrophages metabolic reprogramming in response to microbial insults is a major determinant of pathogen growth or containment. Here, we reveal a distinct mechanism by which stimulator of interferon genes (STING), a cytosolic sensor that regulates innate immune responses, contributes to an inflammatory M1-like macrophage profile upon Brucella abortus infection. This metabolic reprogramming is induced by STING-dependent stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), a global regulator of cellular metabolism and innate immune cell functions. HIF-1α stabilization reduces oxidative phosphorylation and increases glycolysis during infection with B. abortus and, likewise, enhances nitric oxide production, inflammasome activation and IL-1ß release in infected macrophages. Furthermore, the induction of this inflammatory profile participates in the control of bacterial replication since absence of HIF-1α renders mice more susceptible to B. abortus infection. Mechanistically, activation of STING by B. abortus infection drives the production of mitochondrial reactive oxygen species (mROS) that ultimately influences HIF-1α stabilization. Moreover, STING increases the intracellular succinate concentration in infected macrophages, and succinate pretreatment induces HIF-1α stabilization and IL-1ß release independently of its cognate receptor GPR91. Collectively, these data demonstrate a pivotal mechanism in the immunometabolic regulation of macrophages during B. abortus infection that is orchestrated by STING via HIF-1α pathway and highlight the metabolic reprogramming of macrophages as a potential treatment strategy for bacterial infections.


Asunto(s)
Brucella abortus/inmunología , Brucelosis/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Brucelosis/inmunología , Brucelosis/microbiología , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo
7.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34407544

RESUMEN

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapia
8.
Inflamm Res ; 72(2): 203-215, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401631

RESUMEN

OBJECTIVE: This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS: Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS: FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION: Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.


Asunto(s)
Neutrófilos , Sepsis , Humanos , Ratones , Animales , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Células HEK293 , Ratones Endogámicos C57BL , Sepsis/metabolismo , Infiltración Neutrófila
9.
J Immunol ; 207(3): 902-912, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301845

RESUMEN

Myeloid cells are critical for systemic inflammation, microbial control, and organ damage during sepsis. MicroRNAs are small noncoding RNAs that can dictate the outcome of sepsis. The role of myeloid-based expression of microRNA-21 (miR-21) in sepsis is inconclusive. In this study, we show that sepsis enhanced miR-21 expression in both peritoneal macrophages and neutrophils from septic C57BL/6J mice, and the deletion of miR-21 locus in myeloid cells (miR-21Δmyel mice) enhanced animal survival, decreased bacterial growth, decreased systemic inflammation, and decreased organ damage. Resistance to sepsis was associated with a reduction of aerobic glycolysis and increased levels of the anti-inflammatory mediators PGE2 and IL-10 in miR-21Δmyel in vivo and in vitro. Using blocking Abs and pharmacological tools, we discovered that increased survival and decreased systemic inflammation in septic miR-21Δmyel mice is dependent on PGE2/IL-10-mediated inhibition of glycolysis. Together, these findings demonstrate that expression of miR-21 in myeloid cells orchestrates the balance between anti-inflammatory mediators and metabolic reprogramming that drives cytokine storm during sepsis.


Asunto(s)
Dinoprostona/metabolismo , Interleucina-10/metabolismo , Macrófagos Peritoneales/fisiología , MicroARNs/genética , Neutrófilos/fisiología , Sepsis/inmunología , Animales , Células Cultivadas , Reprogramación Celular , Glucólisis , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sepsis/genética
10.
Crit Care ; 26(1): 206, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799268

RESUMEN

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Trampas Extracelulares , Animales , Disulfiram/metabolismo , Trampas Extracelulares/metabolismo , Ratones , Neutrófilos/metabolismo , SARS-CoV-2
11.
Rheumatology (Oxford) ; 60(7): 3461-3473, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33367912

RESUMEN

OBJECTIVE: To evaluate the role of neutrophil extracellular traps (NETs) in the genesis of joint hyperalgesia using an experimental model of arthritis and transpose the findings to clinical investigation. METHODS: C57BL/6 mice were subjected to antigen-induced arthritis (AIA) and treated with Pulmozyme (PLZ) to degrade NETs or Cl-amidine to inhibit NET production. Oedema formation, the histopathological score and mechanical hyperalgesia were evaluated. NETs were injected intra-articularly in wild type (WT), Tlr4-/-, Tlr9-/-, Tnfr1-/- and Il1r-/- mice, and the levels of cytokines and Cox2 expression were quantified. NETs were also quantified from human neutrophils isolated from RA patients and individual controls. RESULTS: AIA mice had increased NET concentration in joints, accompanied by increased Padi4 gene expression in the joint cells. Treatment of AIA mice with a peptidyl arginine deiminase 4 inhibitor or with PLZ inhibited the joint hyperalgesia. Moreover, the injection of NETs into joints of naïve animals generated a dose-dependent reduction of mechanical threshold, an increase of articular oedema, inflammatory cytokine production and cyclooxygenase-2 expression. In mice deficient for Tnfr1, Il1r, Tlr4 and Tlr9, joint hyperalgesia induced by NETs was prevented. Last, we found that neutrophils from RA patients were more likely to release NETs, and the increase in synovial fluid NET concentration correlated with an increase in joint pain. CONCLUSION: The findings indicate that NETs cause hyperalgesia possibly through Toll-like receptor (TLR)-4 and TLR-9. These data support the idea that NETs contribute to articular pain, and this pathway can be an alternative target for the treatment of pain in RA.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Trampas Extracelulares/metabolismo , Hiperalgesia/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 9/genética , Adulto , Anciano , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Experimental/fisiopatología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/fisiopatología , Ciclooxigenasa 2/genética , Citocinas/metabolismo , Femenino , Humanos , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Arginina Deiminasa Proteína-Tipo 4/genética , Receptores de Interleucina-1/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Adulto Joven
12.
Clin Sci (Lond) ; 135(5): 687-701, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33620070

RESUMEN

Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1ß and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1ß production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5'-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.


Asunto(s)
Venenos de Crotálidos/toxicidad , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adenosina Trifosfato , Animales , Bothrops , Caspasa 1/deficiencia , Línea Celular , Humanos , Macrófagos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Enfermedades Musculares/inducido químicamente , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Receptores Purinérgicos P2X7
13.
FASEB J ; 34(8): 10907-10919, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32632939

RESUMEN

Nucleotide oligomerization domain (NOD)-like receptor-12 (NLRP12) has emerged as a negative regulator of inflammation. It is well described that the Th17 cell population increases in patients with early Rheumatoid Arthritis (RA), which correlates with the disease activity. Here, we investigated the role of NLRP12 in the differentiation of Th17 cells and the development of experimental arthritis, using the antigen-induced arthritis (AIA) murine model. We found that Nlrp12-/- mice develop severe arthritis characterized by an exacerbated Th17-mediated inflammatory response with increases in the articular hyperalgesia, knee joint swelling, and neutrophil infiltration. Adoptive transfer of Nlrp12-/- cells into WT mice recapitulated the hyperinflammatory response seen in Nlrp12-/- mice and the treatment with anti-IL-17A neutralizing antibody abrogated arthritis development in Nlrp12-/- mice, suggesting that NLRP12 works as an inhibitor of Th17 cell differentiation. Indeed, Th17 cell differentiation markedly increases in Nlrp12-/- T cells cultured under the Th17-skewing condition. Mechanistically, we found that NLRP12 negatively regulates IL-6-induced phosphorylation of STAT3 in T cells. Finally, pharmacological inhibition of STAT3 reduced Th17 cell differentiation and abrogated hyperinflammatory arthritis observed in Nlrp12-/- mice. Thus, we described a novel role for NLRP12 as a checkpoint inhibitor of Th17 cell differentiation, which controls the severity of experimental arthritis.


Asunto(s)
Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Diferenciación Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Th17/metabolismo , Animales , Artritis Experimental/patología , Artritis Reumatoide/patología , Inflamación/metabolismo , Inflamación/patología , Interleucina-17/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/fisiología , Factor de Transcripción STAT3/metabolismo , Células Th17/patología
14.
J Infect Dis ; 221(9): 1542-1553, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31783409

RESUMEN

BACKGROUND: Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-ß, the consequences of their activation, particularly during sepsis, remain unknown. METHODS: We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS: In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS: Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.


Asunto(s)
Receptores X del Hígado/metabolismo , Neutrófilos/patología , Sepsis/inmunología , Sepsis/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Adulto , Animales , Ciego/microbiología , Ciego/cirugía , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación , Interleucina-8/metabolismo , Ligadura , Receptores X del Hígado/agonistas , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/microbiología , Infiltración Neutrófila/inmunología , Neutrófilos/metabolismo , Punciones , Sepsis/microbiología
15.
Cytokine ; 127: 154965, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31901762

RESUMEN

BACKGROUND: Mechanisms influencing severity of acute lower respiratory infection (ALRI) in children are not established. We aimed to assess the role of inflammatory markers and respiratory viruses in ALRI severity. METHODS: Concentrations of interleukin(IL)-33, soluble suppression of tumorigenicity (sST)2, IL-1ß, tumor necrosis factor α, IL-4, IL-6 and IL- 8 and types of respiratory viruses were evaluated in children at the first and fifth days after hospital admission. Disease severity was defined as need for mechanical ventilation. RESULTS: Seventy-nine children <5 years-old were included; 33(41.8%) received mechanical ventilation. No associations between virus type, viral load or co-detections and severity of disease were observed. Detection of IL-33 and sST2 in nasopharyngeal aspirates (NPA) on admission were associated with higher risk for mechanical ventilation (RR = 2.89 and RR = 4.57, respectively). IL-6 and IL-8 concentrations were higher on Day 5 in mechanically ventilated children. IL-6 NPA concentrations decreased from Day 1 to Day 5 in children who did not receive mechanical ventilation. Increase in sST2 NPA concentrations from Day 1 to Day 5 was associated with longer hospital length of stay (p < 0.01). CONCLUSIONS: An exacerbated local activation of the IL-33/ST2 axis and persistently high sST2 concentrations over time were associated with severity of viral ALRI in children.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/patología , Biomarcadores/metabolismo , Preescolar , Femenino , Hospitalización , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Estudios Prospectivos , Índice de Severidad de la Enfermedad
16.
J Infect Dis ; 219(12): 2015-2025, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30715407

RESUMEN

Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of human encephalitis during 1975-1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.


Asunto(s)
Encefalitis/metabolismo , Infecciones por Flavivirus/metabolismo , Flavivirus/patogenicidad , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animales , Encéfalo , Brasil , Encefalitis/virología , Femenino , Infecciones por Flavivirus/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Nitric Oxide ; 89: 32-40, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31051258

RESUMEN

Nitric oxide (NO) is produced by enzymatic activity of neuronal (nNOS), endothelial (eNOS), and inducible nitric oxide synthase (iNOS) and modulates a broad spectrum of physiological and pathophysiological conditions. The iNOS isoform is positively regulated at transcriptional level and produces high levels of NO in response to inflammatory mediators and/or to pattern recognition receptor signaling, such as Toll-like receptors. In this review, we compiled the main contributions of our group for understanding of the role of NO in sepsis and arthritis outcome and the peripheral contributions of NO to inflammatory pain development. Although neutrophil iNOS-derived NO is necessary for bacterial killing, systemic production of high levels of NO impairs neutrophil migration to infections through inhibiting neutrophil adhesion on microcirculation and their locomotion. Moreover, neutrophil-derived NO contributes to multiple organ dysfunction in sepsis. In arthritis, NO is chief for bacterial clearance in staphylococcal-induced arthritis; however, it contributes to articular damage and bone mass degradation. NO produced in inflammatory sites also downmodulates pain. The mechanism involved in analgesic effect and inhibition of neutrophil migration is dependent on the activation of the classical sGC/cGMP/PKG pathway. Despite the increasing number of studies performed after the identification of NO as an endothelium-derived relaxing factor, the underlying mechanisms of NO in inflammatory diseases remain unclear.


Asunto(s)
Artritis Reumatoide/fisiopatología , Óxido Nítrico/metabolismo , Dolor/fisiopatología , Sepsis/fisiopatología , Animales , Humanos , Inflamación/fisiopatología , Neutrófilos/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo
18.
J Autoimmun ; 90: 49-58, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29426578

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune arthropathy characterized by chronic articular inflammation. Methotrexate (MTX) remains the first-line therapy for RA and its anti-inflammatory effect is associated with the maintenance of high levels of extracellular adenosine (ADO). Nonetheless, up to 40% of RA patients are resistant to MTX treatment and this is linked to a reduction of CD39 expression, an ectoenzyme involved in the generation of extracellular ADO by ATP metabolism, on circulating regulatory T cells (Tregs). However, the mechanism mediating the reduction of CD39 expression on Tregs is unknown. Here we demonstrated that the impairment in TGF-ß signalling lead to the reduction of CD39 expression on Tregs that accounts for MTX resistance. TGF-ß increases CD39 expression on Tregs via the activation of TGFBRII/TGFBRI, SMAD2 and the transcription factor CREB, which is activated in a p38-dependent manner and induces CD39 expression by promoting ENTPD1 gene transcription. Importantly, unresponsive patients to MTX (UR-MTX) show reduced expression of TGFBR2 and CREB1 and decreased levels of p-SMAD2 and p-CREB in Tregs compared to MTX-responsive patients (R-MTX). Furthermore, RA patients carrying at least one mutant allele for rs1431131 (AT or AA) of the TGFBR2 gene are significantly (p = 0.0006) associated with UR-MTX. Therefore, we have uncovered a molecular mechanism for the reduced CD39 expression on Tregs, and revealed potential targets for therapeutic intervention for MTX resistance.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Artritis Reumatoide/inmunología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Anciano , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Resistencia a Medicamentos , Femenino , Regulación de la Expresión Génica , Frecuencia de los Genes , Humanos , Masculino , Metotrexato/uso terapéutico , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/genética , Proteína Smad2/metabolismo
19.
Inflamm Res ; 67(5): 435-443, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29450586

RESUMEN

OBJECTIVE AND DESIGN: The objective of this study was to investigate the role of Nod1 in the recruitment of neutrophils into the infection site and in the establishment of the inflammatory response elicited by a clinical isolate strain of P. aeruginosa in vivo, while comparing it to the well-established role of MyD88 in this process. SUBJECTS: Wild-type, Nod1-/- and MyD88-/- mice, all with a C57Bl/6 background. METHODS: Mice were intranasally infected with Pseudomonas aeruginosa DZ605. Bronchoalveolar lavage and blood were harvested 6 or 20 h post-infection for evaluating bacterial load, chemokine levels and neutrophil migration. Survival post-infection was also observed. RESULTS: We show here that wild-type and Nod1-/- mice induce similar lung chemokine levels, neutrophil recruitment, and bacterial load, thus leading to equal survival rates upon P. aeruginosa pulmonary infection. Furthermore, we confirmed the essential role of MyD88-dependent signalling in recruiting neutrophils and controlling P. aeruginosa-induced pulmonary infection. CONCLUSION: The results suggest that in contrast to MyD88, under our experimental conditions, the absence of Nod1 does not impair the recruitment of neutrophils in response to P. aeruginosa DZ605.


Asunto(s)
Factor 88 de Diferenciación Mieloide/genética , Proteína Adaptadora de Señalización NOD1/genética , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa , Animales , Bacteriemia/microbiología , Líquido del Lavado Bronquioalveolar/microbiología , Quimiocinas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Transducción de Señal/genética
20.
Proc Natl Acad Sci U S A ; 112(8): 2509-14, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675517

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4(+)CD25(+)FoxP3(+)) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39(+)CD4(+)CD25(+)FoxP3(+) Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Resistencia a Medicamentos/inmunología , Metotrexato/uso terapéutico , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/patología , Biomarcadores/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Humanos , Recuento de Linfocitos , Metotrexato/farmacología , Ratones Endogámicos C57BL , Linfocitos T Reguladores/efectos de los fármacos , Células TH1/inmunología , Células Th17/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA