Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 286(33): 28749-28760, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21712378

RESUMEN

Resveratrol, a naturally occurring phytoalexin, is known to induce apoptosis in multiple cancer cell types, but the underlying molecular mechanisms remain unclear. Here, we show that resveratrol induced p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated translocation of Bax to mitochondria where it underwent oligomerization to initiate apoptosis. Resveratrol treatment promoted interaction between Bax and XIAP in the cytosol and on mitochondria, suggesting that XIAP plays a critical role in the activation and translocation of Bax to mitochondria. This process did not involve p53 but required accumulation of Bim and t-Bid on mitochondria. Bax primarily underwent homo-oligomerization on mitochondria and played a major role in release of cytochrome c to the cytosol. Bak, another key protein that regulates the mitochondrial membrane permeabilization, did not interact with p53 but continued to associate with Bcl-xL. Thus, the proapoptotic function of Bak remained suppressed during resveratrol-induced apoptosis. Caspase-9 silencing inhibited resveratrol-induced caspase activation, whereas caspase-8 knockdown did not affect caspase activity, suggesting that resveratrol induces caspase-9-dependent apoptosis. Together, our findings characterize the molecular mechanisms of resveratrol-induced caspase activation and subsequent apoptosis in cancer cells.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Citocromos c/metabolismo , Mitocondrias/metabolismo , Multimerización de Proteína/efectos de los fármacos , Estilbenos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 8/genética , Caspasa 9/genética , Citocromos c/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Humanos , Células Jurkat , Ratones , Ratones Noqueados , Mitocondrias/genética , Multimerización de Proteína/genética , Resveratrol , Proteína p53 Supresora de Tumor/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína X Asociada a bcl-2/genética
2.
Mitochondrion ; 13(5): 493-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23088850

RESUMEN

We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.


Asunto(s)
Antineoplásicos Fitogénicos/metabolismo , Apoptosis , Autofagia , Caspasas/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/efectos de los fármacos , Estilbenos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Resveratrol
3.
Cell Cycle ; 10(23): 4128-37, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22101335

RESUMEN

Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase-3 activation, which is required for apoptosis as confirmed using the pan caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role of caspase-8 in curcumin-induced caspase-3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase-3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of proapoptotic proteins such as Bax, Bak, Bid, and Bim. Crosslinking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid, and Bim causes Bax-channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation, and apoptosis. Importantly, p21-deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement of p21 in Apaf-1 dependent caspase activation and apoptosis. Together, our findings demonstrate that Apaf-1, Bax, and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.


Asunto(s)
Apoptosis , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Curcumina/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Factor Apoptótico 1 Activador de Proteasas/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Inhibidores de Caspasas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Citocromos c/genética , Citocromos c/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Células Jurkat , Lentivirus/genética , Lentivirus/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA