Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386704

RESUMEN

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte de Proteínas , Transporte Biológico , Proteolisis , Osmorregulación , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas de Arabidopsis/genética
2.
Plant Cell ; 35(1): 298-317, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36135824

RESUMEN

The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcineurina/metabolismo , Calcio/metabolismo , Estrés Salino , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo
3.
Nucleic Acids Res ; 52(6): 3469-3482, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38421613

RESUMEN

Gene-editing technologies have revolutionized biotechnology, but current gene editors suffer from several limitations. Here, we harnessed the power of gamma-modified peptide nucleic acids (γPNAs) to facilitate targeted, specific DNA invasion and used T7 endonuclease I (T7EI) to recognize and cleave the γPNA-invaded DNA. Our data show that T7EI can specifically target PNA-invaded linear and circular DNA to introduce double-strand breaks (DSBs). Our PNA-Guided T7EI (PG-T7EI) technology demonstrates that T7EI can be used as a programmable nuclease capable of generating single or multiple specific DSBs in vitro under a broad range of conditions and could be potentially applied for large-scale genomic manipulation. With no protospacer adjacent motif (PAM) constraints and featuring a compact protein size, our PG-T7EI system will facilitate and expand DNA manipulations both in vitro and in vivo, including cloning, large-fragment DNA assembly, and gene editing, with exciting applications in biotechnology, medicine, agriculture, and synthetic biology.


Asunto(s)
Roturas del ADN de Doble Cadena , Desoxirribonucleasa I , Ácidos Nucleicos de Péptidos , Desoxirribonucleasa I/metabolismo , ADN/genética , ADN/metabolismo , ADN Circular , Edición Génica
4.
Nucleic Acids Res ; 51(17): 9491-9506, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37560931

RESUMEN

Programmable site-specific nucleases promise to unlock myriad applications in basic biology research, biotechnology and gene therapy. Gene-editing systems have revolutionized our ability to engineer genomes across diverse eukaryotic species. However, key challenges, including delivery, specificity and targeting organellar genomes, pose barriers to translational applications. Here, we use peptide nucleic acids (PNAs) to facilitate precise DNA strand invasion and unwinding, enabling prokaryotic Argonaute (pAgo) proteins to specifically bind displaced single-stranded DNA and introduce site-specific double-strand breaks (DSBs) independent of the target sequence. We named this technology PNA-assisted pAgo editing (PNP editing) and determined key parameters for designing PNP editors to efficiently generate programable site-specific DSBs. Our design allows the simultaneous use of multiple PNP editors to generate multiple site-specific DSBs, thereby informing design considerations for potential in vitro and in vivo applications, including genome editing.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Ácidos Nucleicos de Péptidos , Sistemas CRISPR-Cas , ADN/genética , Edición Génica/métodos , Genoma , Ácidos Nucleicos de Péptidos/metabolismo , Proteínas Argonautas/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(28): e2118260119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35763567

RESUMEN

Type VI CRISPR-Cas systems have been repurposed for various applications such as gene knockdown, viral interference, and diagnostics. However, the identification and characterization of thermophilic orthologs will expand and unlock the potential of diverse biotechnological applications. Herein, we identified and characterized a thermostable ortholog of the Cas13a family from the thermophilic organism Thermoclostridium caenicola (TccCas13a). We show that TccCas13a has a close phylogenetic relation to the HheCas13a ortholog from the thermophilic bacterium Herbinix hemicellulosilytica and shares several properties such as thermostability and inability to process its own pre-CRISPR RNA. We demonstrate that TccCas13a possesses robust cis and trans activities at a broad temperature range of 37 to 70 °C, compared with HheCas13a, which has a more limited range and lower activity. We harnessed TccCas13a thermostability to develop a sensitive, robust, rapid, and one-pot assay, named OPTIMA-dx, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. OPTIMA-dx exhibits no cross-reactivity with other viruses and a limit of detection of 10 copies/µL when using a synthetic SARS-CoV-2 genome. We used OPTIMA-dx for SARS-CoV-2 detection in clinical samples, and our assay showed 95% sensitivity and 100% specificity compared with qRT-PCR. Furthermore, we demonstrated that OPTIMA-dx is suitable for multiplexed detection and is compatible with the quick extraction protocol. OPTIMA-dx exhibits critical features that enable its use at point of care (POC). Therefore, we developed a mobile phone application to facilitate OPTIMA-dx data collection and sharing of patient sample results. This work demonstrates the power of CRISPR-Cas13 thermostable enzymes in enabling key applications in one-pot POC diagnostics and potentially in transcriptome engineering, editing, and therapies.


Asunto(s)
Proteínas Bacterianas , COVID-19 , Proteínas Asociadas a CRISPR , Clostridiales , Endodesoxirribonucleasas , Pruebas en el Punto de Atención , SARS-CoV-2 , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Biotecnología , COVID-19/diagnóstico , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/genética , Clostridiales/enzimología , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/clasificación , Endodesoxirribonucleasas/genética , Estabilidad de Enzimas , Calor , Humanos , Filogenia , SARS-CoV-2/aislamiento & purificación
6.
Anal Chem ; 95(38): 14209-14218, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37696750

RESUMEN

Monitoring diseases caused by pathogens or by mutations in DNA sequences requires accurate, rapid, and sensitive tools to detect specific nucleic acid sequences. Here, we describe a new peptide nucleic acid (PNA)-based nucleic acid detection toolkit, termed PNA-powered diagnostics (PNA-Pdx). PNA-Pdx employs PNA probes that bind specifically to a target and are then detected in lateral flow assays. This can precisely detect a specific pathogen or genotype genomic sequence. PNA probes can also be designed to invade double-stranded DNAs (dsDNAs) to produce single-stranded DNAs for precise CRISPR-Cas12b-based detection of genomic SNPs without requiring the protospacer-adjacent motif (PAM), as Cas12b requires PAM sequences only for dsDNA targets. PNA-Pdx identified target nucleic acid sequences at concentrations as low as 2 copies/µL and precisely detected the SARS-CoV-2 genome in clinical samples in 40 min. Furthermore, the specific dsDNA invasion by the PNA coupled with CRISPR-Cas12b precisely detected genomic SNPs without PAM restriction. Overall, PNA-Pdx provides a novel toolkit for nucleic acid and SNP detection as well as highlights the benefits of engineering PNA probes for detecting nucleic acids.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Ácidos Nucleicos de Péptidos , Humanos , Ácidos Nucleicos de Péptidos/genética , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Péptidos
7.
Clin Infect Dis ; 74(2): 288-293, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33893491

RESUMEN

BACKGROUND: Few studies have assessed the seroprevalence of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among healthcare workers (HCWs) in Africa. We report findings from a survey among HCWs in 3 counties in Kenya. METHODS: We recruited 684 HCWs from Kilifi (rural), Busia (rural), and Nairobi (urban) counties. The serosurvey was conducted between 30 July and 4 December 2020. We tested for immunoglobulin G antibodies to SARS-CoV-2 spike protein, using enzyme-linked immunosorbent assay. Assay sensitivity and specificity were 92.7 (95% CI, 87.9-96.1) and 99.0% (95% CI, 98.1-99.5), respectively. We adjusted prevalence estimates, using bayesian modeling to account for assay performance. RESULTS: The crude overall seroprevalence was 19.7% (135 of 684). After adjustment for assay performance, seroprevalence was 20.8% (95% credible interval, 17.5%-24.4%). Seroprevalence varied significantly (P < .001) by site: 43.8% (95% credible interval, 35.8%-52.2%) in Nairobi, 12.6% (8.8%-17.1%) in Busia and 11.5% (7.2%-17.6%) in Kilifi. In a multivariable model controlling for age, sex, and site, professional cadre was not associated with differences in seroprevalence. CONCLUSION: These initial data demonstrate a high seroprevalence of antibodies to SARS-CoV-2 among HCWs in Kenya. There was significant variation in seroprevalence by region, but not by cadre.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Teorema de Bayes , Personal de Salud , Humanos , Kenia/epidemiología , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus
8.
Emerg Infect Dis ; 28(13): S159-S167, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36502403

RESUMEN

Kenya's Ministry of Health (MOH) and the US Centers for Disease Control and Prevention in Kenya (CDC Kenya) have maintained a 40-year partnership during which measures were implemented to prevent, detect, and respond to disease threats. During the COVID-19 pandemic, the MOH and CDC Kenya rapidly responded to mitigate disease impact on Kenya's 52 million residents. We describe activities undertaken jointly by the MOH and CDC Kenya that lessened the effects of COVID-19 during 5 epidemic waves from March through December 2021. Activities included establishing national and county-level emergency operations centers and implementing workforce development and deployment, infection prevention and control training, laboratory diagnostic advancement, enhanced surveillance, and information management. The COVID-19 pandemic provided fresh impetus for the government of Kenya to establish a national public health institute, launched in January 2022, to consolidate its public health activities and counter COVID-19 and future infectious, vaccine-preventable, and emerging zoonotic diseases.


Asunto(s)
COVID-19 , Salud Pública , Animales , Estados Unidos , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Centers for Disease Control and Prevention, U.S. , Zoonosis/prevención & control
9.
Plant Biotechnol J ; 20(10): 1859-1873, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689490

RESUMEN

Plant diseases caused by viruses limit crop production and quality, resulting in significant losses. However, options for managing viruses are limited; for example, as systemic obligate parasites, they cannot be killed by chemicals. Sensitive, robust, affordable diagnostic assays are needed to detect the presence of viruses in plant materials such as seeds, vegetative parts, insect vectors, or alternative hosts and then prevent or limit their introduction into the field by destroying infected plant materials or controlling insect hosts. Diagnostics based on biological and physical properties are not very sensitive and are time-consuming, but assays based on viral proteins and nucleic acids are more specific, sensitive, and rapid. However, most such assays require laboratories with sophisticated equipment and technical skills. By contrast, isothermal-based assays such as loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) are simple, easy to perform, reliable, specific, and rapid and do not require specialized equipment or skills. Isothermal amplification assays can be performed using lateral flow devices, making them suitable for onsite detection or testing in the field. To overcome non-specific amplification and cross-contamination issues, isothermal amplification assays can be coupled with CRISPR/Cas technology. Indeed, the collateral activity associated with some CRISPR/Cas systems has been successfully harnessed for visual detection of plant viruses. Here, we briefly describe traditional methods for detecting viruses and then examine the various isothermal assays that are being harnessed to detect viruses.


Asunto(s)
Ácidos Nucleicos , Virus de Plantas , Virus de Plantas/genética , Recombinasas , Sensibilidad y Especificidad , Proteínas Virales
10.
Proc Natl Acad Sci U S A ; 112(12): 3829-34, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775524

RESUMEN

GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the delayed flowering of Arabidopsis gi-201 but showed differential rescue of perturbations in red light inhibition of hypocotyl elongation and altered cold and salt tolerance. The B. rapa R500 GI allele, which failed to rescue the hypocotyl and abiotic stress phenotypes, disrupted circadian period determination in Arabidopsis. Analysis of chimeric B. rapa GI alleles identified the causal nucleotide polymorphism, which results in an amino acid substitution (S264A) between the two GI proteins. This polymorphism underlies variation in circadian period, cold and salt tolerance, and red light inhibition of hypocotyl elongation. Loss-of-function mutations of B. rapa GI confer delayed flowering, perturbed circadian rhythms in leaf movement, and increased freezing and increased salt tolerance, consistent with effects of similar mutations in Arabidopsis. Collectively, these data suggest that allelic variation of GI-and possibly of clock genes in general-offers an attractive target for molecular breeding for enhanced stress tolerance and potentially for improved crop yield.


Asunto(s)
Brassica/genética , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Polimorfismo de Nucleótido Simple , Alelos , Secuencia de Bases , Mapeo Cromosómico , Exones , Flores , Prueba de Complementación Genética , Hipocótilo/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , Sitios de Carácter Cuantitativo , Plantones , Temperatura , Transgenes
11.
Plant Physiol ; 171(3): 2112-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208305

RESUMEN

A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Transporte de Catión/genética , Tolerancia a la Sal/fisiología , Simportadores/genética , Animales , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Femenino , Modelos Moleculares , Oocitos , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Simportadores/química , Simportadores/metabolismo , Xenopus laevis
12.
Virol J ; 14(1): 29, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196510

RESUMEN

BACKGROUND: HIV-1 is highly variable genetically and at protein level, a property it uses to subvert antiviral immunity and treatment. The aim of this study was to assess if HIV subtype differences were associated with variations in glycosylation patterns and co-receptor tropism among HAART patients experiencing different virologic treatment outcomes. METHODS: A total of 118 HIV env C2V3 sequence isolates generated previously from 59 Kenyan patients receiving highly active antiretroviral therapy (HAART) were examined for tropism and glycosylation patterns. For analysis of Potential N-linked glycosylation sites (PNGs), amino acid sequences generated by the NCBI's Translate tool were applied to the HIVAlign and the N-glycosite tool within the Los Alamos Database. Viral tropism was assessed using Geno2Pheno (G2P), WebPSSM and Phenoseq platforms as well as using Raymond's and Esbjörnsson's rules. Chi square test was used to determine independent variables association and ANOVA applied on scale variables. RESULTS: At respective False Positive Rate (FPR) cut-offs of 5% (p = 0.045), 10% (p = 0.016) and 20% (p = 0.005) for CXCR4 usage within the Geno2Pheno platform, HIV-1 subtype and viral tropism were significantly associated in a chi square test. Raymond's rule (p = 0.024) and WebPSSM (p = 0.05), but not Phenoseq or Esbjörnsson showed significant associations between subtype and tropism. Relative to other platforms used, Raymond's and Esbjörnsson's rules showed higher proportions of X4 variants, while WebPSSM resulted in lower proportions of X4 variants across subtypes. The mean glycosylation density differed significantly between subtypes at positions, N277 (p = 0.034), N296 (p = 0.036), N302 (p = 0.034) and N366 (p = 0.004), with HIV-1D most heavily glycosylated of the subtypes. R5 isolates had fewer PNGs than X4 isolates, but these differences were not significant except at position N262 (p = 0.040). Cell-associated isolates from virologic treatment success subjects were more glycosylated than cell-free isolates from virologic treatment failures both for the NXT (p = 0.016), and for all the patterns (p = 0.011). CONCLUSION: These data reveal significant associations of HIV-1 subtype diversity, viral co-receptor tropism, viral suppression and envelope glycosylation. These associations have important implications for designing therapy and vaccines against HIV. Heavy glycosylation and preference for CXCR4 usage of HIV-1D may explain rapid disease progression in patients infected with these strains.


Asunto(s)
Terapia Antirretroviral Altamente Activa , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/fisiología , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Biología Computacional , Variación Genética , Glicosilación , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Kenia , Análisis de Secuencia
14.
Health Res Policy Syst ; 12: 66, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25466570

RESUMEN

BACKGROUND: Health technology assessment (HTA) is mostly used in the context of high- and middle-income countries. Many "resource-poor" settings, which have the greatest need for critical assessment of health technology, have a limited basis for making evidence-based choices. This can lead to inappropriate use of technologies, a problem that could be addressed by HTA that enables the efficient use of resources, which is especially crucial in such settings. There is a lack of clarity about which HTA tools should be used in these settings. This research aims to provide an overview of proposed HTA tools for "resource-poor" settings with a specific focus on sub-Saharan Africa (SSA). METHODOLOGY: A systematic review was conducted using basic steps from the PRISMA guidelines. Studies that described HTA tools applicable for "resource-limited" settings were identified and critically appraised. Only papers published between 2003 and 2013 were included. The identified tools were assessed according to a checklist with methodological criteria. RESULTS: Six appropriate tools that are applicable in the SSA setting and cover methodological robustness and ease of use were included in the review. Several tools fulfil these criteria, such as the KNOW ESSENTIALS tool, Mini-HTA tool, and Multi-Criteria Decision Analysis but their application in the SSA context remains limited. The WHO CHOICE method is a standardized decision making tool for choosing interventions but is limited to their cost-effectiveness. Most evaluation of health technology in SSA focuses on priority setting. There is a lack of HTA tools that can be used for the systematic assessment of technology in the SSA context. CONCLUSIONS: An appropriate HTA tool for "resource-constrained" settings, and especially SSA, should address all important criteria of decision making. By combining the two most promising tools, KNOW ESSENTIALS and Multi-Criteria Decision Analysis, appropriate analysis of evidence with a robust and flexible methodology could be applied for the SSA setting.


Asunto(s)
Técnicas de Apoyo para la Decisión , Política de Salud , Evaluación de la Tecnología Biomédica/métodos , África del Sur del Sahara , Análisis Costo-Beneficio , Medicina Basada en la Evidencia , Necesidades y Demandas de Servicios de Salud , Investigación sobre Servicios de Salud , Humanos , Pobreza , Asignación de Recursos
15.
Front Plant Sci ; 15: 1385169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895613

RESUMEN

Plant viruses cause substantial losses in crop yield and quality; therefore, devising new, robust strategies to counter viral infections has important implications for agriculture. Virus inhibitory protein endoplasmic reticulum-associated interferon-inducible (Viperin) proteins are conserved antiviral proteins. Here, we identified a set of Viperin and Viperin-like proteins from multiple species and tested whether they could interfere with RNA viruses in planta. Our data from transient and stable overexpression of these proteins in Nicotiana benthamiana reveal varying levels of interference against the RNA viruses tobacco mosaic virus (TMV), turnip mosaic virus (TuMV), and potato virus x (PVX). Harnessing the potential of these proteins represents a novel avenue in plant antiviral approaches, offering a broader and more effective spectrum for application in plant biotechnology and agriculture. Identifying these proteins opens new avenues for engineering a broad range of resistance to protect crop plants against viral pathogens.

16.
ACS Synth Biol ; 13(3): 837-850, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38349963

RESUMEN

The World Health Organization's global initiative toward eliminating high-risk Human Papillomavirus (hrHPV)-related cancers recommends DNA testing over visual inspection in all settings for primary cancer screening and HPV eradication by 2100. However, multiple hrHPV types cause different types of cancers, and there is a pressing need for an easy-to-use, multiplex point-of-care diagnostic platform for detecting different hrHPV types. Recently, CRISPR-Cas systems have been repurposed for point-of-care detection. Here, we established a CRISPR-Cas multiplexed diagnostic assay (CRISPRD) to detect cervical cancer-causing hrHPVs in one reaction (one-pot assay). We harnessed the compatibility of thermostable AapCas12b, TccCas13a, and HheCas13a nucleases with isothermal amplification and successfully detected HPV16 and HPV18, along with an internal control in a single-pot assay with a limit of detection of 10 copies and 100% specificity. This platform offers a rapid and practical solution for the multiplex detection of hrHPVs, which may facilitate large-scale hrHPV point-of-care screening. Furthermore, the CRISPRD platform programmability enables it to be adapted for the multiplex detection of any two nucleic acid biomarkers as well as internal control.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Virus del Papiloma Humano , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/prevención & control , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/prevención & control , Pruebas en el Punto de Atención , Papillomavirus Humano 16/genética
17.
Plant Physiol ; 158(3): 1463-74, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22238420

RESUMEN

Cellular Na(+)/K(+) ratio is a crucial parameter determining plant salinity stress resistance. We tested the function of plasma membrane Na(+)/K(+) cotransporters in the High-affinity K(+) Transporter (HKT) family from the halophytic Arabidopsis (Arabidopsis thaliana) relative Thellungiella salsuginea. T. salsuginea contains at least two HKT genes. TsHKT1;1 is expressed at very low levels, while the abundant TsHKT1;2 is transcriptionally strongly up-regulated by salt stress. TsHKT-based RNA interference in T. salsuginea resulted in Na(+) sensitivity and K(+) deficiency. The athkt1 mutant lines overexpressing TsHKT1;2 proved less sensitive to Na(+) and showed less K(+) deficiency than lines overexpressing AtHKT1. TsHKT1;2 ectopically expressed in yeast mutants lacking Na(+) or K(+) transporters revealed strong K(+) transporter activity and selectivity for K(+) over Na(+). Altering two amino acid residues in TsHKT1;2 to mimic the AtHKT1 sequence resulted in enhanced sodium uptake and loss of the TsHKT1;2 intrinsic K(+) transporter activity. We consider the maintenance of K(+) uptake through TsHKT1;2 under salt stress an important component supporting the halophytic lifestyle of T. salsuginea.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brassicaceae/fisiología , Proteínas de Transporte de Catión/metabolismo , Potasio/metabolismo , Cloruro de Sodio/farmacología , Simportadores/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Proteínas de Transporte de Catión/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología , Sodio/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Simportadores/genética
18.
Front Bioeng Biotechnol ; 11: 1118684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741753

RESUMEN

Rapid, specific, and robust diagnostic strategies are needed to develop sensitive biosensors for small molecule detection, which could aid in controlling contamination and disease transmission. Recently, the target-induced collateral activity of Cas nucleases [clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases] was exploited to develop high-throughput diagnostic modules for detecting nucleic acids and small molecules. Here, we have expanded the diagnostic ability of the CRISPR-Cas system by developing Bio-SCAN V2, a ligand-responsive CRISPR-Cas platform for detecting non-nucleic acid small molecule targets. The Bio-SCAN V2 consists of an engineered ligand-responsive sgRNA (ligRNA), biotinylated dead Cas9 (dCas9-biotin), 6-carboxyfluorescein (FAM)-labeled amplicons, and lateral flow assay (LFA) strips. LigRNA interacts with dCas9-biotin only in the presence of sgRNA-specific ligand molecules to make a ribonucleoprotein (RNP). Next, the ligand-induced ribonucleoprotein is exposed to FAM-labeled amplicons for binding, and the presence of the ligand (small molecule) is detected as a visual signal [(dCas9-biotin)-ligRNA-FAM labeled DNA-AuNP complex] at the test line of the lateral flow assay strip. With the Bio-SCAN V2 platform, we are able to detect the model molecule theophylline with a limit of detection (LOD) up to 2 µM in a short time, requiring only 15 min from sample application to visual readout. Taken together, Bio-SCAN V2 assay provides a rapid, specific, and ultrasensitive detection platform for theophylline.

19.
ACS Synth Biol ; 12(1): 1-16, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36508352

RESUMEN

The COVID-19 pandemic has challenged the conventional diagnostic field and revealed the need for decentralized Point of Care (POC) solutions. Although nucleic acid testing is considered to be the most sensitive and specific disease detection method, conventional testing platforms are expensive, confined to central laboratories, and are not deployable in low-resource settings. CRISPR-based diagnostics have emerged as promising tools capable of revolutionizing the field of molecular diagnostics. These platforms are inexpensive, simple, and do not require the use of special instrumentation, suggesting they could democratize access to disease diagnostics. However, there are several obstacles to the use of the current platforms for POC applications, including difficulties in sample processing and stability. In this review, we discuss key advancements in the field, with an emphasis on the challenges of sample processing, stability, multiplexing, amplification-free detection, signal interpretation, and process automation. We also discuss potential solutions for revolutionizing CRISPR-based diagnostics toward sample-to-answer diagnostic solutions for POC and home use.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Pandemias , Sistemas de Atención de Punto , Automatización , Sistemas CRISPR-Cas/genética
20.
PLoS One ; 18(1): e0277657, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36696882

RESUMEN

BACKGROUND: Accurate and timely diagnosis is essential in limiting the spread of SARS-CoV-2 infection. The reference standard, rRT-PCR, requires specialized laboratories, costly reagents, and a long turnaround time. Antigen RDTs provide a feasible alternative to rRT-PCR since they are quick, relatively inexpensive, and do not require a laboratory. The WHO requires that Ag RDTs have a sensitivity ≥80% and specificity ≥97%. METHODS: This evaluation was conducted at 11 health facilities in Kenya between March and July 2021. We enrolled persons of any age with respiratory symptoms and asymptomatic contacts of confirmed COVID-19 cases. We collected demographic and clinical information and two nasopharyngeal specimens from each participant for Ag RDT testing and rRT-PCR. We calculated the diagnostic performance of the Panbio™ Ag RDT against the US Centers for Disease Control and Prevention's (CDC) rRT-PCR test. RESULTS: We evaluated the Ag RDT in 2,245 individuals where 551 (24.5%, 95% CI: 22.8-26.3%) tested positive by rRT-PCR. Overall sensitivity of the Ag RDT was 46.6% (95% CI: 42.4-50.9%), specificity 98.5% (95% CI: 97.8-99.0%), PPV 90.8% (95% CI: 86.8-93.9%) and NPV 85.0% (95% CI: 83.4-86.6%). Among symptomatic individuals, sensitivity was 60.6% (95% CI: 54.3-66.7%) and specificity was 98.1% (95% CI: 96.7-99.0%). Among asymptomatic individuals, sensitivity was 34.7% (95% CI 29.3-40.4%) and specificity was 98.7% (95% CI: 97.8-99.3%). In persons with onset of symptoms <5 days (594/876, 67.8%), sensitivity was 67.1% (95% CI: 59.2-74.3%), and 53.3% (95% CI: 40.0-66.3%) among those with onset of symptoms >7 days (157/876, 17.9%). The highest sensitivity was 87.0% (95% CI: 80.9-91.8%) in symptomatic individuals with cycle threshold (Ct) values ≤30. CONCLUSION: The overall sensitivity and NPV of the Panbio™ Ag RDT were much lower than expected. The specificity of the Ag RDT was high and satisfactory; therefore, a positive result may not require confirmation by rRT-PCR. The kit may be useful as a rapid screening tool only for symptomatic patients in high-risk settings with limited access to rRT-PCR. A negative result should be interpreted based on clinical and epidemiological information and may require retesting by rRT-PCR.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antígenos Virales , COVID-19/diagnóstico , Prueba de COVID-19 , Instituciones de Salud , Kenia/epidemiología , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA