Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Dis ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787002

RESUMEN

Maize (Zea mays L.) is the main cereal food of humans and animals in Brazil. In 2020 and 2021, a severe infestation of corn leafhoppers (Dalbulus maidis; Hemiptera: Cicadellidae) was observed in Santa Catarina State (South of Brazil). Subsequently, symptoms of chlorotic stripes limited in leaf veins started to appear in maize plants. Given the similarity of symptoms and the presence of high populations of corn leafhoppers in corn production areas, 30 plants in reproductive stage showing systemic symptoms were collected in summer and autumn from commercial fields of five municipalities in Santa Catarina: Campos Novos (27°23'18.0"S, 51°12'52.7"W), Lages (27°47'17.8"S, 50°18'16.9"W), Mafra (26°06'42"S, 49°48'25"W), Fraiburgo (27°01'36"S, 50°55'19"W), and Abelardo Luz (26°34'02"S, 52°20'02"W). The young leaves of these samples were used for molecular analyses targeting the maize rayado fino virus (MRFV; Tymoviridae: Marafivirus). Total nucleic acids were extracted using TRIzol® (Invitrogen, USA), following the manufacturer's instructions. These were used as a template for cDNA synthesis with the enzyme MMLV-RT (Promega, USA), following the manufacturer's instructions. The polymerase chain reaction (PCR) was performed using Gotaq® DNA polymerase (Promega, USA) and MRFV-09/MRFV-10 primers (Hammond et al. 1997). All PCR products were subjected to electrophoresis in 1% agarose gel and were visualized under ultraviolet light. Twenty-eight of the 30 tested plants were MRFV-positive, showing a fragment with an expected size of ~633 bp. To confirm our results, all MRFV-positive samples were sent for sequencing (GenBank accession numbers OM763708 - OM763710 and ON730784 - ON730806) and submitted to BLASTn search (https://blast.ncbi.nlm.nih.gov/Blast.cgi), resulting in identities ranging from 96.21% to 99.21% with the isolate "Brazil 26" of MRFV, which was detected in 2005 in São Paulo, Brazil (GenBank accession nº: AF186178) (Hammond and Bedendo 2005). A second set of primers was used to validate the first PCR, confirming MRFV infection (data not shown).Moreover, whitish streaks and leaf reddening were observed on the leaves of some plants; therefore, the identification for phytoplasmas (Candidatus Phytoplasma asteris) and spiroplasmas (Spiroplasma kunkelii) from the corn stunt complex was performed. For this, previously extracted nucleic acids from each sample were used as templates for a multiplex PCR using the primers CSSR6/CSSF2 and R16F2n/R16R2 (Gundersen and Lee 1996; Barros et al. 2001). Two plants were infected with only spiroplasma, 17 samples were infected with Spiroplasma and MRFV, and three samples were infected by these three pathogens. An increasing incidence of corn stunt has been observed in commercial fields in Santa Catarina in recent years. Mollicutes are commonly found and mostly studied as causal agents of corn stunt disease. On the contrary, despite being present in Brazil since the 1970s, the virus is less studied because its contribution to the corn stunt complex is still unknown (Hammond and Bedendo 2001). In this report, indications that the virus is expanding to different regions in southern Brazil were observed, which raises an opportunity for further evaluation and its consideration in monitoring programs. Moreover, to the best of our knowledge, this is the first report of MRFV in Santa Catarina, Brazil.

2.
Environ Sci Technol ; 51(1): 38-45, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27991775

RESUMEN

The Fe (oxyhydr)oxide rind, or Fe plaque, that forms on aquatic plant roots is an important sorbent of metal(loid)s and plays a role in the attenuation of metal(loid) uptake into higher plants. However, the mineral composition of Fe plaque and thus its potential to sorb metal(loid)s is affected by solution chemistry. The predominant strategy to characterize Fe plaque using dithionite-citrate-bicarbonate (DCB) extraction and elemental analysis reveals total Fe quantity but misses the mineral structure of the Fe (oxyhydr)oxide. Here, we developed a new technique using gentle sonication to sample intact Fe plaque from the root system and concentrate it for subsequent mineralogical characterization using synchrotron-based X-ray diffraction and X-ray absorption spectroscopy. We then coupled that data with conventional DCB extraction. The sample preparation method was effective at concentrating As-bound Fe plaque minerals in a uniform coating onto membranes that could easily be analyzed with X-ray techniques. Using these methods, we show that the percentage of poorly ordered Fe minerals in Fe plaque increases with increasing pore-water Si in flooded rice paddy soils. These findings have implications for understanding mineral controls on As cycling in the soil-rice nexus, and the sampling approach can be adopted for other aquatic plant systems.


Asunto(s)
Hierro/química , Oryza/química , Minerales , Raíces de Plantas/química , Suelo/química , Contaminantes del Suelo , Espectroscopía de Absorción de Rayos X
3.
Ecotoxicol Environ Saf ; 122: 136-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26232040

RESUMEN

Rare earth elements such as lanthanum (La) have been used as agricultural inputs in some countries in order to enhance yield and improve crop quality. However, little is known about the effect of La on the growth and structure of soybean, which is an important food and feed crop worldwide. In this study, bioaccumulation of La and its effects on the growth and mitotic index of soybean was evaluated. Soybean plants were exposed to increasing concentrations of La (0, 5, 10, 20, 40, 80, and 160 µM) in nutrient solution for 28 days. Plant response to La was evaluated in terms of plant growth, nutritional characteristics, photosynthetic rate, chlorophyll content, mitotic index, modifications in the ultrastructure of roots and leaves, and La mapping in root and shoot tissues. The results showed that the roots of soybean plants can accumulate sixty-fold more La than shoots. La deposition occurred mainly in cell walls and in crystals dispersed in the root cortex and in the mesophyll. When La was applied, it resulted in increased contents of some essential nutrients (i.e., Ca, P, K, and Mn), while Cu and Fe levels decreased. Moreover, low La concentrations stimulated the photosynthetic rate and total chlorophyll content and lead to a higher incidence of binucleate cells, resulting in a slight increase in roots and shoot biomass. At higher La levels, soybean growth was reduced. This was caused by ultrastructural modifications in the cell wall, thylakoids and chloroplasts, and the appearance of c-metaphases.


Asunto(s)
Glycine max/efectos de los fármacos , Lantano/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Índice Mitótico , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/ultraestructura
4.
Front Plant Sci ; 14: 1240442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810399

RESUMEN

Pistachio (Pistacia vera L.), an economically and nutritionally important tree crop, relies on winter chill for bud endodormancy break and subsequent blooming and nut production. However, insufficient winter chill poses an increasing challenge in pistachio growing regions. To gain a better understanding of the physiological and biochemical responses of endodormant pistachio buds to chilling accumulation, we investigated the global gene expression changes in flower buds of pistachio cv. Kerman that were cultivated at three different orchard locations and exposed to increasing durations of winter chill. The expression of genes encoding ß-1,3-glucanase and ß-amylase, enzymes responsible for breaking down callose (ß-1,3-glucan) and starch (α-1,4-glucan), respectively, increased during the endodormancy break of pistachio buds. This result suggested that the breakdown of callose obstructing stomata as well as the release of glucose from starch enables symplasmic trafficking and provides energy for bud endodormancy break and growth. Interestingly, as chilling accumulation increased, there was a decrease in the expression of nine-cis-epoxycarotenoid dioxygenase (NCED), encoding an enzyme that uses carotenoids as substrates and catalyzes the rate-limiting step in abscisic acid (ABA) biosynthesis. The decrease in NCED expression suggests ABA biosynthesis is suppressed, thus reducing inhibition of endodormancy break. The higher levels of carotenoid precursors and a decrease in ABA content in buds undergoing endodormancy break supports this suggestion. Collectively, the temporal transcriptome and biochemical analyses revealed that the degradation of structural (callose) and non-structural (starch) carbohydrates, along with the attenuation of ABA biosynthesis, are critical processes driving endodormancy break in pistachio buds.

5.
Foods ; 12(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36981141

RESUMEN

Since soybean is widely cultivated around the world and has a high protein content, it is a great nutritional vehicle for increasing the dietary uptake of selenium (Se). Several studies have evaluated biofortification with Se through fertilizer application in several crops. However, it is not clear how each method and source affect the total Se content or Se species in soybean grains. This work aimed to assess the total Se content and Se speciation in Se-enriched soybean grains produced under different Se application methods in the field. The treatments consisted of Se application (soil or foliar), using organic or inorganic Se sources at 10 g ha-1 or 80 g ha-1, in two genotypes. The results showed that all treatments with inorganic Se (soil and foliar) increased the Se content in grains compared with the control. More than 80% of the total Se in grains was present as selenomethionine (SeMet), and the speciation was affected by the Se source and the method of application. The treatments using inorganic Se, applied via soil or foliar, produced the highest content of Se as SeMet in soybean grains. Finally, we propose that the preservation of the Se species in products derived from soybean grains be evaluated as the following step.

6.
Front Plant Sci ; 13: 837695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463431

RESUMEN

There has been much interest in the incorporation of organic molecules or biostimulants into foliar fertilizers with the rationalization that these compounds will enhance the uptake, or subsequent mobility of the applied nutrient. The objective of this research was to investigate the effects of an inositol-based plant stimulant on the mobility and accumulation of foliar-applied zinc (Zn) in wheat plants (Triticum aestivum L.). High-resolution elemental imaging with micro-X-ray fluorescence (µ-XRF) was utilized to examine Zn distribution within the vascular bundle of the leaf and whole grains. The inclusion of myo-inositol with Zinc sulfate, significantly increased Zn concentration in shoots in contrast to untreated controls and Zn sulfate applied alone. Foliar Zn treated plants increased Zn in grains by 5-25% with myo-inositol plus Zn treated plants significantly increasing grain Zn concentration compared to both Zn treated and non-treated controls. XRF imaging revealed Zn enrichment in the bran layer and germ, with a very low Zn concentration present in the endosperm. Plants treated with Zn plus myo-inositol showed an enhanced and uniform distribution of Zn throughout the bran layer and germ with an increased concentration in the endosperm. While our data suggest that foliar application of myo-inositol in combination with Zn may be a promising strategy to increase the absorption and mobility of Zn in the plant tissue and subsequently to enhance Zn accumulation in grains, further research is needed to clarify the mechanisms by which myo-inositol affects plant metabolism and nutrient mobility.

7.
Front Plant Sci ; 13: 988140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186079

RESUMEN

Soybean is a major crop in Brazil and is usually grown in oxidic soils that need high rates of phosphate (P) fertilizers. Soybean is also very suitable for biofortification with Se, since its grains have high protein contents and are widely consumed worldwide (directly or indirectly). Few studies have addressed Se application under field conditions for soybean biofortification, especially in tropical soils. Here, we evaluated agronomic and physiological responses resulting from different strategies for biofortifying soybean grains with Se by applying this element via soil, using both conventional and enhanced-efficiency P fertilizers as Se carriers. The experiment was carried out at the Uva Farm, in Capão Bonito (São Paulo), Brazil. The experimental design was a randomized block split-plot design, with four fertilizer sources-conventional monoammonium phosphate (C-MAP), conventional monoammonium phosphate + Se (C-MAP + Se), enhanced-efficiency monoammonium phosphate (E-MAP), and enhanced-efficiency monoammonium phosphate + Se (E-MAP + Se), and four soybean genotypes (M5917, 58I60 LANÇA, TMG7061, and NA5909). The selenium rate applied via C-MAP + Se and E-MAP + Se was 80 g ha-1. The application of the tested fertilizers was carried out at the sowing of the 2018/2019 cropping season, with their residual effect being also assessed in the 2019/2020 cropping season. Selenium application increased grain yield for the TMG7061 genotype. For all evaluated genotypes, Se content in grains increased in the 2018/2019 harvest with the application of Se via C-MAP + Se and E-MAP + Se. In general, the application of Se via C-MAP favored an increase in amino acid contents in grains and decreased lipid peroxidation. In summary, the application of Se-enriched P fertilizers via soil increased soybean grain yield, leading to better grain quality. No residual effects for biofortifying soybean grains were detected in a subsequent soybean cropping season.

8.
Front Plant Sci ; 13: 1000430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172560

RESUMEN

The effects of selenium (Se) on plant metabolism have been reported in several studies triggering plant tolerance to abiotic stresses, yet, the effects of Se on coffee plants under chilling stress are unclear. This study aimed to evaluate the effects of foliar Se application on coffee seedlings submitted to chilling stress and subsequent plant recovery. Two Coffea species, Coffea arabica cv. Arara, and Coffea canephora clone 31, were submitted to foliar application of sodium selenate solution (0.4 mg plant-1) or a control foliar solution, then on day 2 plants were submitted to low temperature (10°C day/4°C night) for 2 days. After that, the temperature was restored to optimal (25°C day/20°C night) for 2 days. Leaf samples were collected three times (before, during, and after the chilling stress) to perform analyses. After the chilling stress, visual leaf injury was observed in both species; however, the damage was twofold higher in C. canephora. The lower effect of cold on C. arabica was correlated to the increase in ascorbate peroxidase and higher content of starch, sucrose, and total soluble sugars compared with C. canephora, as well as a reduction in reducing sugars and proline content during the stress and rewarming. Se increased the nitrogen and sulfur content before stress but reduced their content during low temperature. The reduced content of nitrogen and sulfur during stress indicates that they were remobilized to stem and roots. Se supply reduced the damage in C. canephora leaves by 24% compared with the control. However, there was no evidence of the Se effects on antioxidant enzymatic pathways or ROS activity during stress as previously reported in the literature. Se increased the content of catalase during the rewarming. Se foliar supply also increased starch, amino acids, and proline, which may have reduced symptom expression in C. canephora in response to low temperature. In conclusion, Se foliar application can be used as a strategy to improve coffee tolerance under low-temperature changing nutrient remobilization, carbohydrate metabolism, and catalase activity in response to rewarming stress, but C. arabica and C. canephora respond differently to chilling stress and Se supply.

9.
Environ Int ; 128: 301-309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077999

RESUMEN

Increasing plant-availability of Si through soil amendment of Si-rich rice residues can decrease inorganic As without affecting Cd levels in grain under flooded soil conditions. However, the impacts of Si amendments on Cd and As uptake by rice under different flooding extents have not been reported. We investigated the effects of different flooding extent on As and Cd uptake by rice and accumulation in grain in well-weathered soil amended with Si-rich rice husk (Husk) or mixed charred/ashed rice husk (Ash). Our results show that Husk and to a lesser extent Ash amendments decreased grain As under both flooded (~40% and 20% decrease, respectively) and nonflooded (~75% decrease) conditions due to increased Si. Under flooded conditions grain As and yield is higher, and Husk amendment additionally decreased grain inorganic As by ~45%. Under nonflooded conditions grain Cd is higher and yield is lower, and Ash amendment decreased grain, husk, and straw Cd by ~40-50% not due to Si, but due to increased aboveground biomass and an increase in soil pH, which helped to retain Cd in soil. These data illustrate that rice residue addition to paddy soil can lower human health risk under both flooded and nonflooded conditions without affecting grain Zn and Fe.


Asunto(s)
Arsénico/análisis , Cadmio/análisis , Inundaciones , Contaminación de Alimentos/análisis , Oryza/química , Silicio/análisis , Contaminantes del Suelo/análisis , Agricultura/métodos , Grano Comestible/química
10.
Sci Total Environ ; 624: 1360-1368, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929248

RESUMEN

An emerging approach to limit rice uptake and grain As targets the shared root-uptake pathway between As(III) and Si. We amended rice paddy mesocosms with Si-rich rice residues (husk and husk char) or silicate fertilizer to evaluate the impact of different Si sources on rice uptake of Si and As including As speciation in grain under background soil As. For a systems-approach, we also measured plant biomass, rice yield, porewater chemistry, mesocosm-scale CH4 and CO2 fluxes, plant concentrations of nutrients and metals, and root Fe plaque mineralogy. Relative to the control, Si-rich amendments increased plant Si and proportion of ferrihydrite on root plaque, decreased root-to-shoot Mn transfer and As uptake, and shifted grain As from inorganic to organic As. The charred husk treatment, which resulted in the most Si accumulation in rice shoots, most decreased plant As and grain As. Husk treatment led to the highest CH4 emissions, but all treatments had lower CH4 emissions than has been reported for straw treatments. Collectively, Si-rich amendments performed similarly across several biogeochemical benchmarks, with charred husk best restricting plant As, suggesting these amendments can be used to reduce toxicity of As from rice grain while maintaining yield.


Asunto(s)
Agricultura/métodos , Arsénico/química , Restauración y Remediación Ambiental/métodos , Fertilizantes , Oryza/química , Silicio/química , Contaminantes del Suelo/química , Arsénico/análisis , Oryza/fisiología , Silicio/análisis , Contaminantes del Suelo/análisis
11.
Pest Manag Sci ; 71(10): 1371-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25354766

RESUMEN

BACKGROUND: In initial assays, Thymus vulgaris essential oil (TEO) has demonstrated activity against several plant-pathogenic fungi and has reduced the fungal diseases to levels comparable with commercial fungicides. Thus, the goal of this work was to identify the mode of action in fungi of TEO and its major compound thymol (TOH) at the cellular level using an ultrastructure approach. RESULTS: TEO from leaves and TOH had minimum inhibitory concentrations (MICs) of 500 and 250 µg mL(-1) respectively against A. alternata; under the same conditions, MIC for a commercial fungicide was 1250 µg mL(-1) . Ultrastructure analysis showed that TOH phenolic substance prevented fungal growth, reduced fungal viability and prevented the penetration in fruits by a cell wall/plasma membrane interference mode of action with organelles targeted for destruction in the cytoplasm. Such mode of action differs from protective and preventive-curative commercial fungicides used as pattern control. CONCLUSION: These findings suggest that TOH was responsible for the antifungal activity of TEO. Therefore, both the essential oil and its major substance have potential for use in the development of new phenolic structures and analogues to control Alternaria brown spot disease caused by Alternaria alternata.


Asunto(s)
Alternaria/efectos de los fármacos , Fungicidas Industriales/farmacología , Viabilidad Microbiana/efectos de los fármacos , Aceites Volátiles/farmacología , Thymus (Planta)/química , Alternaria/crecimiento & desarrollo , Alternaria/fisiología , Citrus/microbiología , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Timol/farmacología
12.
Front Plant Sci ; 4: 180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750166

RESUMEN

Plant species with the capacity to tolerate heavy metals are potentially useful for phytoremediation since they have adapted to survive and reproduce under toxic conditions and to accumulate high metal concentrations. Gomphrena claussenii Moq., a South-American species belonging to the Amaranthaceae, is found at a zinc (Zn) mining area in the state of Minas Gerais, Brazil. Through soil and hydroponic experiments, the metal tolerance and accumulation capacities of G. claussenii were assessed and the effects on physiological characteristics were compared with a closely related non-tolerant species, G. elegans Mart. G. claussenii plants grown in soil sampled at the Zn smelting area accumulated up to 5318µgg(-) (1) of Zn and 287 µg g(-) (1) of cadmium (Cd) in shoot dry biomass after 30 days of exposure. Plants were grown in hydroponics containing up to 3000 µM of Zn and 100 µM of Cd for G. claussenii and 100 µM of Zn and 5 µM of Cd for G. elegans. G. claussenii proved to be an extremely tolerant species to both Zn and Cd, showing only slight metal toxicity symptoms at the highest treatment levels, without significant decrease in biomass and no effects on root growth, whereas the non-tolerant species G. elegans showed significant toxicity effects at the highest exposure levels. Both species accumulated more Zn and Cd in roots than in shoots. In G. elegans, over 90% of the Cd remained in the roots, but G. claussenii showed a root:shoot concentration ratio of around 2, with shoots reaching 0.93% Zn and 0.13% Cd on dry matter base. In G. claussenii shoots, the concentrations of other minerals, such as iron (Fe) and manganese (Mn), were only affected by the highest Zn treatment while in G. elegans the Fe and Mn concentrations in shoots decreased drastically at both Zn and Cd treatments. Taking together, these results indicate that G. claussenii is a novel metallophyte, extremely tolerant of high Zn and Cd exposure and an interesting species for further phytoremediation studies.

13.
Ciênc. rural ; 43(11): 1945-1951, nov. 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-689954

RESUMEN

Stem and ear rot caused by Stenocarpella maydis are responsible for severe losses in maize production. Treatment of seeds with fungicides may induce environmental damage. Hence, this study aimed to evaluate the effects of essential oils extracted from Cymbopogon winterianus, Thymus vulgaris, Cymbopogon citratus, Corymbia citriodora, Cinnamomum zeylanicum, and Syzygium aromaticum on the development of in vitro S. maydis. In addition, maize seeds were treated with these essential oils to determine their possible mode of action and effects. The oils from S. aromaticum, C. zeylanicum, and T. vulgaris inhibited fungal development at concentrations higher than 0.025%. The oils from S. aromaticum and C. zeylanicum showed seed germination rates of 89.0% and 84.5%, which were higher than that of the control. The oils from S. aromaticum and C. zeylanicum reduced the pathogen incidence in the seeds to 39.0% and 28.0%, respectively. Further, these oils as well as that from T. vulgaris produced lower reduction of maize stand. Scanning electron microscopy examination revealed that essential oils from S. aromaticum and T. vulgaris acted directly on the conidia, impeding germination. The findings suggest that the oils from S. aromaticum, C. zeylanicum, and T. vulgaris are potential alternatives for maize seed treatment in the control of S. maydis.


A podridão-do-colmo e espiga, causada por Stenocarpella maydis, é responsável por graves perdas na produção de milho. O tratamento de sementes com fungicidas pode provocar danos ambientais. Por isso, este estudo objetivou avaliar o efeito de óleos essenciais extraídos de Cymbopogon winterianus (citronela), Thymus vulgaris (tomilho), Cymbopogon citratus (capim-limão), Corymbia citriodora (eucalipto), Cinnamomum zeylanicum (canela) e Syzygium aromaticum (cravo-da-Índia) sobre o desenvolvimento de S. maydis in vitro. Além disso, sementes de milho foram tratadas com esses óleos essenciais para determinar seus possíveis modos de ação e efeitos. Os óleos de S. aromaticum, C. zeylanicum e T. vulgaris inibiram o desenvolvimento do fungo nas concentrações maiores que 0,025%. Os óleos de S. aromaticum e C. zeylanicum mostraram taxas de germinação de sementes de 89,0% e 84,5%, as quais foram maiores que a testemunha. Esses óleos reduziram a incidência do patógeno nas sementes para 39,0% e 28%, respectivamente. Além disso, esses óleos, bem como o óleo de T. vulgaris, produziram menor redução do estande de milho. O exame de microscopia eletrônica de varredura revelou que os óleos de S. aromaticum and T. vulgaris agiram diretamente sobre os conídios, impedindo a germinação. Os resultados deste trabalho sugerem que os óleos de S. aromaticum, C. zeylanicum e T. vulgaris são alternativas potenciais para o tratamento de sementes de milho no controle de S. maydis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA