Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 173(1): 62-73.e9, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29526462

RESUMEN

Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Modelos Biológicos , Mutagénesis , Agregado de Proteínas/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 120(29): e2221484120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428921

RESUMEN

Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 is well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. The phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO complex formation and we provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO complex formation.


Asunto(s)
Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Fosforilación , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Quinasas Ciclina-Dependientes/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(16): 6088-93, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22492931

RESUMEN

Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.


Asunto(s)
Materiales Biocompatibles/química , Calcificación Fisiológica , Carbonato de Calcio/química , Transición de Fase , Animales , Materiales Biocompatibles/metabolismo , Carbonato de Calcio/metabolismo , Cristalización , Embrión no Mamífero/química , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Microscopía Electrónica/métodos , Minerales/química , Minerales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Strongylocentrotus purpuratus/química , Strongylocentrotus purpuratus/embriología , Strongylocentrotus purpuratus/metabolismo , Agua/química , Espectroscopía de Absorción de Rayos X/métodos
4.
bioRxiv ; 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36711604

RESUMEN

Eukaryotic DNA replication must occur exactly once per cell cycle to maintain cell ploidy. This outcome is ensured by temporally separating replicative helicase loading (G1 phase) and activation (S phase). In budding yeast, helicase loading is prevented outside of G1 by cyclin-dependent kinase (CDK) phosphorylation of three helicase-loading proteins: Cdc6, the Mcm2-7 helicase, and the origin recognition complex (ORC). CDK inhibition of Cdc6 and Mcm2-7 are well understood. Here we use single-molecule assays for multiple events during origin licensing to determine how CDK phosphorylation of ORC suppresses helicase loading. We find that phosphorylated ORC recruits a first Mcm2-7 to origins but prevents second Mcm2-7 recruitment. Phosphorylation of the Orc6, but not of the Orc2 subunit, increases the fraction of first Mcm2-7 recruitment events that are unsuccessful due to the rapid and simultaneous release of the helicase and its associated Cdt1 helicase-loading protein. Real-time monitoring of first Mcm2-7 ring closing reveals that either Orc2 or Orc6 phosphorylation prevents Mcm2-7 from stably encircling origin DNA. Consequently, we assessed formation of the MO complex, an intermediate that requires the closed-ring form of Mcm2-7. We found that ORC phosphorylation fully inhibits MO-complex formation and provide evidence that this event is required for stable closing of the first Mcm2-7. Our studies show that multiple steps of helicase loading are impacted by ORC phosphorylation and reveal that closing of the first Mcm2-7 ring is a two-step process started by Cdt1 release and completed by MO-complex formation. Significance Statement: Each time a eukaryotic cell divides (by mitosis) it must duplicate its chromosomal DNA exactly once to ensure that one full copy is passed to each resulting cell. Both under-replication or over-replication result in genome instability and disease or cell death. A key mechanism to prevent over-replication is the temporal separation of loading of the replicative DNA helicase at origins of replication and activation of these same helicases during the cell division cycle. Here we define the mechanism by which phosphorylation of the primary DNA binding protein involved in these events inhibits helicase loading. Our studies identify multiple steps of inhibition and provide new insights into the mechanism of helicase loading in the uninhibited condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA