Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Stem Cell Reports ; 15(6): 1233-1245, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-32976761

RESUMEN

Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.


Asunto(s)
Reprogramación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Animales , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Metilación , Ratones
2.
Cell Rep ; 22(4): 876-884, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29420174

RESUMEN

The ability of induced pluripotent stem cells (iPSCs) to differentiate into all adult cell types makes them attractive for research and regenerative medicine; however, it remains unknown when and how this capacity is established. We characterized the acquisition of developmental pluripotency in a suitable reprogramming system to show that iPSCs prior to passaging become capable of generating all tissues upon injection into preimplantation embryos. The developmental potential of nascent iPSCs is comparable to or even surpasses that of established pluripotent cells. Further functional assays and genome-wide molecular analyses suggest that cells acquiring developmental pluripotency exhibit a unique combination of properties that distinguish them from canonical naive and primed pluripotency states. These include reduced clonal self-renewal potential and the elevated expression of differentiation-associated transcriptional regulators. Our observations close a gap in the understanding of induced pluripotency and provide an improved roadmap of cellular reprogramming with ramifications for the use of iPSCs.


Asunto(s)
Regulación de la Expresión Génica/genética , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Diferenciación Celular , Humanos , Ratones
3.
Stem Cell Reports ; 3(4): 574-84, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25358786

RESUMEN

The differentiated state of somatic cells provides barriers for the derivation of induced pluripotent stem cells (iPSCs). To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. Surprisingly, inhibition of transforming growth factor ß (TGF-ß) together with activation of Wnt signaling in the presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after 1 week of reprogramming factor expression. In contrast, hepatic and blood progenitors predominantly required only TGF-ß inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner, and we demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF-ß/mitogen-activated protein (MAP) kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Our observations define cell-type-specific requirements for the rapid and synchronous reprogramming of somatic cells.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Sistema de Señalización de MAP Quinasas , Vía de Señalización Wnt , Animales , Ácido Ascórbico/farmacología , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factor de Crecimiento Transformador beta/metabolismo
4.
Stem Cells Dev ; 21(3): 384-93, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22013995

RESUMEN

Understanding the mechanism by which embryonic stem (ES) cells self-renew is crucial for the realization of their therapeutic potential. Earlier, overexpression of Id proteins was shown to be sufficient to maintain mouse ES cells in a self-renewing state even in the absence of serum. Here, we use ES cells derived from Id deficient mice to investigate the requirement for Id proteins in maintaining ES cell self-renewal. We find that Id1(-/-) ES cells have a defect in self-renewal and a propensity to differentiate. We observe that chronic or acute loss of Id1 leads to a down-regulation of Nanog, a critical regulator of self-renewal. In addition, in the absence of Id1, ES cells express elevated levels of Brachyury, a marker of mesendoderm differentiation. We find that loss of both Nanog and Id1 is required for the up-regulation of Brachyury, and ectopic Nanog expression in Id1(-/-) ES cells rescues the self-renewal defect, indicating that Nanog is the major downstream target of Id1. These results identify Id1 as a critical factor in the maintenance of ES cell self-renewal and suggest a plausible mechanism for its control of lineage commitment.


Asunto(s)
Células Madre Embrionarias/citología , Proteínas Fetales/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Medios de Cultivo/metabolismo , Técnicas de Cultivo de Embriones/métodos , Células Madre Embrionarias/metabolismo , Femenino , Proteínas Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Ratones , Ratones Noqueados , Proteína Homeótica Nanog , Plásmidos/genética , Plásmidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Dominio T Box/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA