RESUMEN
Morphological, nutritional and molecular analyses were carried out to assess genetic diversity among 35 introduced lentil genotypes (Lens culinaris Medik.). The genotypes exhibited significant differences for their field parameters and some of them showed noticeable superiority. The nutritional and proximate analysis showed that some genotypes were excellent sources of proteins, essential amino acids, minerals, anti-oxidants, total phenolic contents (TPC) and total flavonoid contents (TFC) and hence, highlights lentil nutritional and medicinal potential. Sequence-related amplified polymorphism (SRAP) and amplified fragments length polymorphism (AFLP) markers were used to estimate the genetic variability at the molecular level. The existence of a considerable amount of genetic diversity among the tested lentil genotypes was also proven at the molecular level. A total of 2894 polymorphic SRAP and 1625 AFLP loci were successfully amplified using six SRAP and four AFLP primer pair combinations. Polymorphism information content (PIC) values for SRAP and AFLP markers were higher than 0.8, indicating the power and higher resolution of those marker systems in detecting molecular diversity. UPGMA (unweighted pair group method with arithmetic average) cluster analysis based on molecular data revealed large number of sub clusters among genotypes, indicating high diversity levels. The data presented here showed that FLIP2009-64L and FLIP2009-69L could be used as a significant source of yield, total protein, essential amino acids, and antioxidant properties. The results suggest potential lentil cultivation in the central region of Saudi Arabia for its nutritional and medicinal properties, as well as sustainable soil fertility crop.
Asunto(s)
Variación Genética , Lens (Planta)/genética , Antioxidantes/química , Antioxidantes/metabolismo , Análisis por Conglomerados , Flavonoides/química , Flavonoides/metabolismo , Sitios Genéticos , Genotipo , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/metabolismo , Fenoles/química , Fenoles/metabolismo , Arabia SauditaRESUMEN
Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity and relationship among 58 faba bean (Vicia faba L.) genotypes. Fourteen SRAP primer combinations amplified a total of 1036 differently sized well-resolved peaks (fragments), of which all were polymorphic with a 0.96 PIC value and discriminated all of the 58 faba bean genotypes. An average pairwise similarity of 21% was revealed among the genotypes ranging from 2% to 65%. At a similarity of 28%, UPGMA clustered the genotypes into three main groups comprising 78% of the genotypes. The local landraces and most of the Egyptian genotypes in addition to the Sudan genotypes were grouped in the first main cluster. The advanced breeding lines were scattered in the second and third main clusters with breeding lines from the ICARDA and genotypes introduced from Egypt. At a similarity of 47%, all the genotypes formed separated clusters with the exceptions of Hassawi 1 and Hassawi 2. Group analysis of the genotypes according to their geographic origin and type showed that the landraces were grouped according to their origin, while others were grouped according to their seed type. To our knowledge, this is the first application of SRAP markers for the assessment of genetic diversity in faba bean. Such information will be useful to determine optimal breeding strategies to allow continued progress in faba bean breeding.
Asunto(s)
Marcadores Genéticos , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Vicia faba/genética , Genes de Plantas , Variación Genética , Genotipo , Técnicas de Amplificación de Ácido Nucleico/métodos , FilogeniaRESUMEN
Sustainable agriculture is a prerequisite for food and environmental security. Chemical fertilization, especially nitrogenous fertilization, is considered the most consumed for field crops. In rice crops, plants consume much less than half of the applied N-fertilizer. In the current investigation, multiple N environments were generated by applying different N doses of urea fertilizer to a permanent transplanted field for two successive summer growing seasons at the rice research and training center, Kafrelsheikh, Egypt. A set of 55 genotypes consisting of 25 Jabonica, 4 Tropical Japonica, 20 Indica, and 6 Indica/Japonica were transplanted under no N (0N), Low N (LN), medium N (MN), and High N (HN) (i.e., 0, 48, 96, and 165 Kg N ha-1, respectively). Highly significant differences were detected among the tested genotypes. AMMI analysis of variance revealed the existence of the genotype via nitrogen interaction (GNI) on yield performance. The GNI principal components (IPCA); IPCA1 and IPCA2 scores were significant and contributed values of 71.1 and 21.7%, respectively. The highest-ranked genotypes were MTU1010, IR22, SK2046, SK2058, IR66, and Yabani LuLu based on their grain yield means (30.7, 29.9, 29.5, 29.3, 28.8, and 28.5 g plant-1). These genotypes were grouped into the same subcluster (SCL) according to the stability analysis ranking matrix. Based on AMMI analysis and biplots, MTU1010 and Yabani LuLu showed yield stability across environments. Meanwhile, the which-won-where biplot showed that IR22 was superior under unfavorable N-levels and MTU1010 was stable across the different environments. These findings are considered to be of great importance to breeders for initiating low-nitrogen-input breeding programs for sustainable agriculture.
RESUMEN
Rice is considered a strategic crop for many countries around the world, being the main cash crop for farmers. Water shortage stress occurrence as a result of climate change is among the main threats challenging rice breeders in the last few decades. In the current study, 19 Fn-lines were developed from four populations by crossing a reverse thermo-responsive genic male sterile (rTGMS) line, M.J.5460S, with the three high-quality Egyptian commercial cultivars Giza177, Sakha105, Sakha106 and the promising line GZ7768 as male parents. These newly developed lines, along with their parents, and two water shortage stress-tolerant international genotypes (Azucena and IRAT170), were cultivated under water-shortage stress conditions and compared with their performance under well-watered conditions. Results indicated that the yielding ability of the 19 newly developed lines exceeded those for the two Egyptian parents (Giza177 and Sakha105) under well-watered conditions. The lines M.J5460S/GIZA177-3 and M.J5460S/GIZA177-12 were the best performing genotypes under water shortage stress conditions. The genetic and heritability in broad sense estimates indicated that direct selection for grain yield (GY) under water-shortage stress is highly effective in the current study. Molecular marker analysis revealed that M.J5460S/GIZA177-3 had accumulated the quantitative trait loci (QTL)s, on the chromosomes 2, 3, and 9, which contribute to GY under water-shortage stress from their high yielding tolerant ancestor, M.J5460S. It could be concluded that those lines are high yielding under both well-watered and water-stress conditions harboring several QTLs for yield enhancement under both conditions and that the markers RM555, RM14551, RM3199, RM257, RM242, and RM410 are among the markers that could be used in marker-assisted selection (MAS) breeding programs for such stress condition.
RESUMEN
This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77â¯mgâ¯GAE/g, whereas flavonoids varied from 0.68 to 2.13â¯mgâ¯QE/g. The GC-MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.
RESUMEN
Drought and salinity are the major factors that limit the faba bean (Vicia faba L.) production worldwide. The aim of this study is to identify the water stress differentially expressed genes (DEGs) through the root transcriptome analyses of the drought-tolerant Hassawi 2 genotype at vegetative and flowering stages. A total of 624.8 M high-quality Illumina reads were generated and assembled into 198,155 all-unigenes with a mean length of 738 bp and an N50 length of 1347 bp. Among all-unigenes, 78,262 were assigned to non-redundant (Nr), 66,254 to nucleotide (Nt), 54,034 to KEGG, and 43,913 to gene ontology (GO) annotations. A total of 36,834 and 35,510 unigenes were differentially expressed at the vegetative and flowering stages of Hassawi 2 under drought stress, respectively. The majority of unigenes were down-regulated at both developmental stages. However, the number of genes up-regulated (15,366) at the flowering stage exceeded the number of those up-regulated (14,097) at the vegetative stage, and the number of genes down-regulated (20,144) at the flowering stage was smaller than the number of those down-regulated (22,737) at the vegetative stage. The drought stress-responsive differentially expressed unigenes coded for various regulatory proteins, including protein kinases and phosphatases, transcription factors and plant hormones and functional proteins including enzymes for osmoprotectant, detoxification and transporters were differentially expressed, most of which were largely up-regulated. Moreover, a substantial proportion of the DEGs identified in this study were novel, most exhibited a significant change in their expression levels under water stress, making them an unexploited resource that might control specific responses to drought stress in the faba bean. Finally, qRT-PCR results were found almost consistent with the results of next-generation sequencing. Our data will help in understanding the drought tolerance mechanisms in plants and will provide resources for functional genomics.
RESUMEN
This study was carried out to identify drought-responsive genes in a drought tolerant faba bean variety (Hassawi 2) using a suppressive subtraction hybridization approach (SSH). A total of 913 differentially expressed clones were sequenced from a differential cDNA library that resulted in a total of 225 differentially expressed ESTs. The genes of mitochondrial and chloroplast origin were removed, and the remaining 137 EST sequences were submitted to the gene bank EST database (LIBEST_028448). A sequence analysis identified 35 potentially drought stress-related ESTs that regulate ion channels, kinases, and energy production and utilization and transcription factors. Quantitative PCR on Hassawi 2 genotype confirmed that more than 65% of selected drought-responsive genes were drought-related. Among these induced genes, the expression levels of eight highly up-regulated unigenes were further analyzed across 38 selected faba bean genotypes that differ in their drought tolerance levels. These unigenes included ribulose 1,5-bisphosphate carboxylase (rbcL) gene, non-LTR retroelement reverse related, probable cyclic nucleotide-gated ion channel, polyubiquitin, potassium channel, calcium-dependent protein kinase and putative respiratory burst oxidase-like protein C and a novel unigene. The expression patterns of these unigenes were variable across 38 genotypes however, it was found to be very high in tolerant genotype. The up-regulation of these unigenes in majority of tolerant genotypes suggests their possible role in drought tolerance. The identification of possible drought responsive candidate genes in Vicia faba reported here is an important step toward the development of drought-tolerant genotypes that can cope with arid environments.
RESUMEN
Development of highly informative markers such as simple sequence repeats (SSR) for cultivar identification and germplasm characterization and management is essential for date palms genetic studies. The present study documents the development of SSR markers and assesses genetic relationships of commonly grown date palm (Phoenix dactylifera L.) cultivars in different geographical regions of Saudi Arabia. A total of 93 novel simple sequence repeat (SSR) markers were screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs are dinucleotide, 25% trinucleotide, 3% tetranucleotide, and 1% pentanucleotide motives and show 100% polymorphism. The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis illustrates that cultivars trend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) reveals genetic variation among and within cultivars of 27% and 73%, respectively, according to the geographical distribution of the cultivars. Developed microsatellite markers are of additional value to date palm characterization, tools which can be used by researchers in population genetics, cultivar identification, as well as genetic resource exploration and management. The cultivars tested exhibited a significant amount of genetic diversity and could be suitable for successful breeding programs. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).
Asunto(s)
Genoma de Planta/genética , Repeticiones de Microsatélite/genética , Phoeniceae/genética , Cruzamiento/métodos , Análisis por Conglomerados , ADN de Plantas/genética , Marcadores Genéticos/genética , Genómica/métodos , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodosRESUMEN
Due to the limitations associated with shoot tip explants in the micropropagation of date palm, inflorescence explants are an ideal alternative. This chapter focuses on the protocol for the induction of callus from inflorescence tissue, establishment for proliferation of somatic embryos, germination, elongation, rooting, and acclimatization. Female inflorescences, 30-40 cm in length, cv. Shaishee, were used for culture initiation. After disinfection, the outer inflorescence cover (spathe) is cut open, and the spikelet explants, 1 cm long, are cultured on modified Murashige and Skoog (MS) medium containing 100 mg/L 2,4-D, 3 mg/L kinetin, and 3 mg/L 2ip and incubated at 25 ± 2 °C in the dark. Callus obtained after 6-8 months of culturing is transferred to the culture medium to induce somatic embryogenesis and plant regeneration. Well-developed regenerated shoots are cultured on MS medium containing 0.2 mg/L NAA for root induction and plantlets acclimatized in the greenhouse before transfer to the field.
Asunto(s)
Inflorescencia/citología , Phoeniceae/crecimiento & desarrollo , Técnicas de Embriogénesis Somática de Plantas/métodos , Aclimatación , Medios de Cultivo/química , Organogénesis de las Plantas , Phoeniceae/citología , Brotes de la Planta/crecimiento & desarrollo , Regeneración , Técnicas de Cultivo de TejidosRESUMEN
Expressed sequence tags (EST) were generated from a normalized cDNA library of the date palm Sukkari cv. to understand the high-quality and better field performance of this well-known commercial cultivar. A total of 6943 high-quality ESTs were generated, out of them 6671 are submitted to the GenBank dbEST (LIBEST_028537). The generated ESTs were assembled into 6362 unigenes, consisting of 494 (14.4%) contigs and 5868 (84.53%) singletons. The functional annotation shows that the majority of the ESTs are associated with binding (44%), catalytic (40%), transporter (5%), and structural molecular (5%) activities. The blastx results show that 73% of unigenes are significantly similar to known plant genes and 27% are novel. The latter could be of particular interest in date palm genetic studies. Further analysis shows that some ESTs are categorized as stress/defense- and fruit development-related genes. These newly generated ESTs could significantly enhance date palm EST databases in the public domain and are available to scientists and researchers across the globe. This knowledge will facilitate the discovery of candidate genes that govern important developmental and agronomical traits in date palm. It will provide important resources for developing genetic tools, comparative genomics, and genome evolution among date palm cultivars.
Asunto(s)
Etiquetas de Secuencia Expresada/metabolismo , Genes de Plantas/genética , Phoeniceae/genética , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica de las Plantas/genética , Biblioteca de Genes , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Filogenia , Análisis de Secuencia de ADN/métodosRESUMEN
Forty faba bean (Vicia faba L.) genotypes were evaluated for their agro-morphological performance and molecular diversity under Central Region of Saudi Arabia conditions during 2010-11 and 2011-12 seasons. Field performance results showed that faba genotypes exhibited a significant amount of variation for their agro-morphological studied parameters. Giza40 recorded the tallest genotype (139.5 cm), highest number of seeds per plants (100.8), and the highest seed yield per plant (70.8 g). The best performing genotypes were Giza40, FLIP03-014FB, Gazira1 and Goff1. Genetic variability among genotypes was determined using Sequence Related Amplified Polymorphism (SRAP) and Amplified Fragment Length Polymorphism (AFLP) markers. A total of 183 amplified fragments (alleles) and 1758 polymorphic fragments (bands) in SRAP and 202 alleles and 716 bands in AFLP were obtained using six SRAP and four AFLP primer combinations respectively. Polymorphism information content (PIC) values for AFLP and SRAP markers were higher than 0.8, indicating the existence of a considerable amount of genetic diversity among faba tested genotypes. The UPGMA based clustering of faba genotypes was largely based on origin and/or genetic background. Result of cluster analysis based on SRAP showed weak and not significant correlation while, it was highly significant based on AFLP analysis with agro-morphological characters (r = 0.01, p > 0.54 and r = 0.26, p < 0.004 respectively). Combined SRAP and AFLP markers proved to be significantly useful for genetic diversity assessment at molecular level. They exhibited high discrimination power, and were able to distinguish the faba bean genotypes with high efficiency and accuracy levels.
RESUMEN
Background: The present study was undertaken towards the development of SSR markers and assessing genetic relationships among 32 date palm (Phoenix dactylifera L.) representing common cultivars grown in different geographical regions in Saudi Arabia. Results: Ninety-three novel simple sequence repeat markers were developed and screened for their ability to detect polymorphism in date palm. Around 71% of genomic SSRs were dinucleotide, 25% tri, 3% tetra and 1% penta nucleotide motives. Twenty-two primers generated a total of 91 alleles with a mean of 4.14 alleles per locus and 100% polymorphism percentage. A 0.595 average polymorphic information content and 0.662 primer discrimination power values were recorded. The expected and observed heterozygosities were 0.676 and 0.763 respectively. Pair-wise similarity values ranged from 0.06 to 0.89 and the overall cultivars averaged 0.41. The UPGMA cluster analysis recovered by principal coordinate analysis illustrated that cultivars tend to group according to their class of maturity, region of cultivation, and fruit color. Analysis of molecular variations (AMOVA) revealed that genetic variation among and within cultivars were 27% and 73%, respectively according to geographical distribution of cultivars. Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI), Sequence Read Archive (Accession numbers. LIBGSS_039019).
Asunto(s)
Polimorfismo Genético , Repeticiones de Microsatélite , Phoeniceae/genética , Arabia Saudita , Variación Genética , Producción de Cultivos , HeterocigotoRESUMEN
OsARF1 is the first full-length member of auxin response factor (ARF) gene family to be cloned from monocot plant. Using quantitative RT-PCR this study found that, the transcript abundance of OsARF1 was significantly higher in embryonic tissues than in vegetative tissues. To investigate the effect of OsARF1 on the phenotype of rice, a cDNA fragment of OsARF1 was inserted in inverse orientation to the 35S promoter in vector pBin438 to produce an antisense (AS) construction. The AS-OsARF1 construct was transferred into rice (Oryza sativa L. japonica) calli via Agrobacterium tumefaciens-mediated transformation. Molecular analysis of transgenic plants showed that the functional expression of OsARF1 was inhibited at mRNA level efficiently. The AS-OsARF1 plants showed extremely low growth, poor vigor, short curled leaves and tillered but were sterile. Therefore, the OsARF1 was shown to be essential for growth in vegetative organs and seed development.