RESUMEN
Innate-like T cell populations expressing conserved TCRs play critical roles in immunity through diverse developmentally acquired effector functions. Focusing on the prototypical lineage of invariant natural killer T (iNKT) cells, we sought to dissect the mechanisms and timing of fate decisions and functional effector differentiation. Utilizing induced expression of the semi-invariant NKT cell TCR on double positive thymocytes, an initially highly synchronous wave of iNKT cell development was triggered by brief homogeneous TCR signaling. After reaching a uniform progenitor state characterized by IL-4 production potential and proliferation, effector subsets emerged simultaneously, but then diverged toward different fates. While NKT17 specification was quickly completed, NKT1 cells slowly differentiated and expanded. NKT2 cells resembled maturing progenitors, which gradually diminished in numbers. Thus, iNKT subset diversification occurs in dividing progenitor cells without acute TCR input but utilizes multiple active cytokine signaling pathways. These data imply a two-step model of iNKT effector differentiation.
Asunto(s)
Citocinas/metabolismo , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Biomarcadores , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunologíaRESUMEN
Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1-HIND interaction, cannot use certain non-canonical 5' splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.
Asunto(s)
Empalme Alternativo , Regulación Fúngica de la Expresión Génica , Ligasas/metabolismo , Sitios de Empalme de ARN/genética , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Eliminación de Gen , Humanos , Ligasas/deficiencia , Ligasas/genética , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/deficiencia , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/deficiencia , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Empalmosomas/química , Empalmosomas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , UbiquitinasRESUMEN
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
RESUMEN
KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.
Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente TumoralRESUMEN
Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells' specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model.
Asunto(s)
Ingeniería Celular/métodos , Edición Génica/métodos , Neoplasias/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología , Animales , Proteína 9 Asociada a CRISPR/genética , Línea Celular , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Vectores Genéticos , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Neoplasias/terapia , Donantes de Tejidos , Transducción Genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Asunto(s)
Elementos Transponibles de ADN/genética , Pruebas Genéticas/métodos , Linfoma de Células B/genética , Animales , Sistemas CRISPR-Cas/genética , Células Clonales , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Genes Supresores de Tumor , Estudios de Asociación Genética , Humanos , Pérdida de Heterocigocidad , Linfoma de Células B/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos B/metabolismo , Reproducibilidad de los ResultadosRESUMEN
The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-ß mediated degradation of ß-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises ß-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.
Asunto(s)
Células de la Médula Ósea/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Células Madre Mesenquimatosas/metabolismo , Receptor Notch2/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Reprogramación Celular , Humanos , Ratones , Receptor Cross-Talk , beta Catenina/metabolismoRESUMEN
Different from canonical ubiquitin-like proteins, Hub1 does not form covalent conjugates with substrates but binds proteins non-covalently. In Saccharomyces cerevisiae, Hub1 associates with spliceosomes and mediates alternative splicing of SRC1, without affecting pre-mRNA splicing generally. Human Hub1 is highly similar to its yeast homolog, but its cellular function remains largely unexplored. Here, we show that human Hub1 binds to the spliceosomal protein Snu66 as in yeast; however, unlike its S. cerevisiae homolog, human Hub1 is essential for viability. Prolonged in vivo depletion of human Hub1 leads to various cellular defects, including splicing speckle abnormalities, partial nuclear retention of mRNAs, mitotic catastrophe, and consequently cell death by apoptosis. Early consequences of Hub1 depletion are severe splicing defects, however, only for specific splice sites leading to exon skipping and intron retention. Thus, the ubiquitin-like protein Hub1 is not a canonical spliceosomal factor needed generally for splicing, but rather a modulator of spliceosome performance and facilitator of alternative splicing.
Asunto(s)
Empalme Alternativo/genética , Precursores del ARN/genética , ARN Mensajero/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Ubiquitinas/metabolismo , Supervivencia Celular , Células Cultivadas , Exones/genética , Humanos , Intrones/genética , ARN Interferente Pequeño/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética , Empalmosomas/patología , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/genéticaRESUMEN
Cdc48 (also known as p97), a conserved chaperone-like ATPase, plays a strategic role in the ubiquitin system. Empowered by ATP-driven conformational changes, Cdc48 acts as a segregase by dislodging ubiquitylated proteins from their environment. Ufd1, a known co-factor of Cdc48, also binds SUMO (ref. 6), but whether SUMOylated proteins are subject to the segregase activity of Cdc48 as well and what these substrates are remains unknown. Here we show that Cdc48 with its co-factor Ufd1 is SUMO-targeted to proteins involved in DNA double-strand break repair. Cdc48 associates with SUMOylated Rad52, a factor that assembles the Rad51 recombinase on chromatin. By acting on the Rad52-Rad51 complex, Cdc48 curbs their physical interaction and displaces the proteins from DNA. Genetically interfering with SUMO-targeting or segregase activity leads to an increase in spontaneous recombination rates, accompanied by aberrant in vivo Rad51 foci formation in yeast and mammalian cells. Our data thus suggest that SUMO-targeted Cdc48 restricts the recombinase Rad51 by counterbalancing the activity of Rad52. We propose that Cdc48, through its ability to associate with co-factors that have affinities for ubiquitin and SUMO, connects the two modification pathways for protein degradation or other regulatory purposes.