RESUMEN
PFAS, known as "forever" compounds, are prevalent in various environments, including soils and aquatic systems, due to extensive usage. Surface waters in several European countries, especially marinas and ports with high boat traffic, require further study as potential contamination sources. Reliable methods for the extraction and quantification of these emergent compounds are essential. This study aimed to improve an existent solid phase extraction method to analyse marinas and ports' surface waters with variable salinities (2, 9 and 17 PSU). The objectives were to: 1) optimise the solid phase extraction method, considering matrix salinity effects and cross-contaminations, 2) validate the extraction and quantification method of 18 EPA 537.1 PFAS in estuarine surface waters, using the Ultra-High Performance Liquid Chromatography - Quadrupole Time - Of - Flight - Tandem Mass spectrometry, and 3) apply the optimised method for PFAS quantification in three Portuguese marinas. All ICH criteria were successfully validated considering 9 PSU. Limits of quantification ranged from 117.80 ng/L to 385 ng/L, except for PFHpA (645.85 ng/L). PFAS levels (PFOA, HFPO-DA, PFBS, PFHxS and PFOS) were relatively low, reaching a maximum of 0.32 ng/L only for the PFOA. In Freixo marina, total average concentrations were slightly higher (∑PFAS = 1.02 ng/L) when compared to the ones found in Cais da Ribeira Port (∑PFAS = 0.94 ng/L) and Afurada marina (∑PFAS = 0.81 ng/L). PFOS concentrations are below the limit values set by the Environmental Quality Standards (36000 ng/L of PFOS for inland surface water, respectively), similar to other Portuguese river studies. This study enabled the development of a precise and reliable extraction and quantification method to quantify PFAS in estuarine surface waters, particularly from marinas. This method can be readily applied to analyse PFAS in other estuarine samples.
RESUMEN
As a consequence of global warming, extreme events, such as marine heatwaves (MHW), have been increasing in frequency and intensity with negative effects on aquatic organisms. This innovative study evaluated for the first time, the immunological and physiological response of the estuarine edible bivalve Scrobicularia plana to different heatwaves, with distinct duration and recovery periods. So, extensive immune (total haemocyte count - THC, haemocyte viability, phagocytosis rate, respiratory oxidative burst of haemocytes, total protein, protease activity, nitric oxide and bactericidal activity of plasma) and oxidative stress (lipid peroxidation - LPO, superoxide dismutase - SOD, catalase - CAT and glutathione-S-Transferase - GST) analyses were performed in an experimental study that tested the impact of heatwaves during 25 days. The survival and condition of S. plana were not affected by the exposure to the extreme events. However, our data suggested that longer heatwaves with shorter recovery periods can be more challenging for the species, since THC and phagocytic activity were most affected under the temperature increase conditions. Regarding the oxidative status, the species increased its SOD activity while MDA production slightly declined to the increase of temperature, protecting the organism from cellular damage. These results indicate that S. plana has a great capacity to adapt to environmental temperature changes, however, the expected higher frequency/duration of heatwaves with climate change trends can cause some debility of the species face to other stressors, which can compromise its success in the future.
Asunto(s)
Bivalvos/inmunología , Bivalvos/metabolismo , Calor/efectos adversos , Estrés Oxidativo , Animales , Recuento de Células Sanguíneas , Catalasa/metabolismo , Glutatión Transferasa/metabolismo , Hemocitos , Peroxidación de Lípido , Malondialdehído/metabolismo , Fagocitosis , Superóxido Dismutasa/metabolismoRESUMEN
In the last years, progestins have raised special concerns for their documented negative effects on aquatic species, yet little is known about their environmental levels in surface waters and bioaccumulation in the trophic web. This study aimed to 1) adapt an extraction method for quantifying progestins in freeze-dried matrices, 2) validate the analytical procedure for three matrices: bivalve, polychaete, and crustacean, and 3) characterize levels of the four most prescribed synthetic progestins in key species across three Portuguese estuaries. Through the validated method, progestins were only quantifiable for the crustacean. Values were generally low, peaking with drospirenone values in Ria de Aveiro (1.33 ± 0.26 ng/g ww) and Tagus estuary (1.42 ± 0.55 ng/g ww), while Ria Formosa exhibited the lowest progestin concentrations (< 1 ng/g ww). This study enabled the development of a precise extraction and analytical method for quantifying steroid hormones in three distinct biological matrices.