Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1286626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029103

RESUMEN

Terpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron-sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron-sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.

2.
Methods Mol Biol ; 2305: 53-80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33950384

RESUMEN

Biological processes are often mediated by complexes formed between proteins and various biomolecules. The 3D structures of such protein-biomolecule complexes provide insights into the molecular mechanism of their action. The structure of these complexes can be predicted by various computational methods. Choosing an appropriate method for modelling depends on the category of biomolecule that a protein interacts with and the availability of structural information about the protein and its interacting partner. We intend for the contents of this chapter to serve as a guide as to what software would be the most appropriate for the type of data at hand and the kind of 3D complex structure required. Particularly, we have dealt with protein-small molecule ligand, protein-peptide, protein-protein, and protein-nucleic acid interactions.Most, if not all, model building protocols perform some sampling and scoring. Typically, several alternate conformations and configurations of the interactors are sampled. Each such sample is then scored for optimization. To boost the confidence in these predicted models, their assessment using other independent scoring schemes besides the inbuilt/default ones would prove to be helpful. This chapter also lists such software and serves as a guide to gauge the fidelity of modelled structures of biomolecular complexes.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Complejos Multiproteicos/química , Conformación Proteica , Algoritmos , Biología Computacional , Simulación por Computador , Ligandos , Ácidos Nucleicos/química , Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Programas Informáticos
3.
PLoS Negl Trop Dis ; 13(12): e0007419, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830030

RESUMEN

Despite Nipah virus outbreaks having high mortality rates (>70% in Southeast Asia), there are no licensed drugs against it. In this study, we have considered all 9 Nipah proteins as potential therapeutic targets and computationally identified 4 putative peptide inhibitors (against G, F and M proteins) and 146 small molecule inhibitors (against F, G, M, N, and P proteins). The computations include extensive homology/ab initio modeling, peptide design and small molecule docking. An important contribution of this study is the increased structural characterization of Nipah proteins by approximately 90% of what is deposited in the PDB. In addition, we have carried out molecular dynamics simulations on all the designed protein-peptide complexes and on 13 of the top shortlisted small molecule ligands to check for stability and to estimate binding strengths. Details, including atomic coordinates of all the proteins and their ligand bound complexes, can be accessed at http://cospi.iiserpune.ac.in/Nipah. Our strategy was to tackle the development of therapeutics on a proteome wide scale and the lead compounds identified could be attractive starting points for drug development. To counter the threat of drug resistance, we have analysed the sequences of the viral strains from different outbreaks, to check whether they would be sensitive to the binding of the proposed inhibitors.


Asunto(s)
Antivirales/aislamiento & purificación , Antivirales/farmacología , Virus Nipah/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Antivirales/química , Antivirales/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA