Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36251991

RESUMEN

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Asunto(s)
Asparagina , Hexosiltransferasas , Asparagina/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Manosa , Polisacáridos , Transferasas/metabolismo
2.
J Biomol NMR ; 78(1): 9-18, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37989910

RESUMEN

Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass E. coli culture. We developed a system utilizing Saccharomyces cerevisiae, [13C]-glucose, and [15N]-ammonium chloride with complexity comparable to E. coli. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86-92% 15N and 30% 13C incorporation into the polypeptide, or a rich medium which provides 98% 15N and 95% 13C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using E. coli.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Animales , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos , Glicoproteínas/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Mamíferos
3.
J Biomol NMR ; 78(2): 125-132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407675

RESUMEN

A large proportion of human proteins contain post-translational modifications that cannot be synthesized by prokaryotes. Thus, mammalian expression systems are often employed to characterize structure/function relationships using NMR spectroscopy. Here we define the selective isotope labeling of secreted, post-translationally modified proteins using human embryonic kidney (HEK)293 cells. We determined that alpha-[15N]- atoms from 10 amino acids experience minimal metabolic scrambling (C, F, H, K, M, N, R, T, W, Y). Two more interconvert to each other (G, S). Six others experience significant scrambling (A, D, E, I, L, V). We also demonstrate that tuning culture conditions suppressed V and I scrambling. These results define expectations for 15N-labeling in HEK293 cells.


Asunto(s)
Aminoácidos , Marcaje Isotópico , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Humanos , Células HEK293 , Resonancia Magnética Nuclear Biomolecular/métodos , Aminoácidos/química , Marcaje Isotópico/métodos , Procesamiento Proteico-Postraduccional
4.
Mol Cell Proteomics ; 20: 100025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32938749

RESUMEN

This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), online separations, and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.


Asunto(s)
Glicosaminoglicanos/análisis , Espectrometría de Masas/métodos , Animales , Humanos , Programas Informáticos
5.
J Biol Chem ; 297(6): 101391, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762909

RESUMEN

Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant subfragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80-85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.


Asunto(s)
Antígenos de Protozoos/metabolismo , Sulfatos de Condroitina/metabolismo , Glicocálix/metabolismo , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/genética , Femenino , Glicocálix/química , Glicocálix/genética , Células HEK293 , Células HeLa , Humanos , Malaria Falciparum/genética , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Placenta/metabolismo , Plasmodium falciparum/genética , Embarazo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
6.
J Biomol NMR ; 76(4): 95-105, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35802275

RESUMEN

The predominant protein expression host for NMR spectroscopy is Escherichia coli, however, it does not synthesize appropriate post-translation modifications required for mammalian protein function and is not ideal for expressing naturally secreted proteins that occupy an oxidative environment. Mammalian expression platforms can address these limitations; however, these are not amenable to cost-effective uniform 15 N labeling resulting from highly complex growth media requirements. Yeast expression platforms combine the simplicity of bacterial expression with the capabilities of mammalian platforms, however yeasts require optimization prior to isotope labeling. Yeast expression will benefit from methods to boost protein expression levels and developing labeling conditions to facilitate growth and high isotope incorporation within the target protein. In this work, we describe a novel platform based on the yeast Saccharomyces cerevisiae that simultaneously expresses the Kar2p chaperone and protein disulfide isomerase in the ER to facilitate the expression of secreted proteins. Furthermore, we developed a growth medium for uniform 15 N labeling. We recovered 2.2 mg/L of uniformly 15 N-labeled human immunoglobulin (Ig)G1 Fc domain with 90.6% 15 N labeling. NMR spectroscopy revealed a high degree of similarity between the yeast and mammalian-expressed IgG1 Fc domains. Furthermore, we were able to map the binding interaction between IgG1 Fc and the Z domain through chemical shift perturbations. This platform represents a novel cost-effective strategy for 15 N-labeled immunoglobulin fragments.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Saccharomyces cerevisiae , Animales , Escherichia coli/metabolismo , Glicosilación , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Marcaje Isotópico/métodos , Mamíferos/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Saccharomyces cerevisiae/metabolismo
7.
Glycobiology ; 31(4): 425-435, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-32902634

RESUMEN

Preparation of samples for nuclear magnetic resonance (NMR) characterization of larger proteins requires enrichment with less abundant, NMR-active, isotopes such as 13C and 15N. This is routine for proteins that can be expressed in bacterial culture where low-cost isotopically enriched metabolic substrates can be used. However, it can be expensive for glycosylated proteins expressed in mammalian culture where more costly isotopically enriched amino acids are usually used. We describe a simple, relatively inexpensive procedure in which standard commercial media is supplemented with 13C-enriched glucose to achieve labeling of all glycans plus all alanines of the N-terminal domain of the highly glycosylated protein, CEACAM1. We demonstrate an ability to detect partially occupied N-glycan sites, sites less susceptible to processing by an endoglycosidase, and some unexpected truncation of the amino acid sequence. The labeling of both the protein (through alanines) and the glycans in a single culture requiring no additional technical expertise past standard mammalian expression requirements is anticipated to have several applications, including structural and functional screening of the many glycosylated proteins important to human health.


Asunto(s)
Glucosa , Glicoproteínas , Animales , Isótopos de Carbono , Glucosa/metabolismo , Glicoproteínas/metabolismo , Humanos , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética , Mamíferos/metabolismo , Resonancia Magnética Nuclear Biomolecular
8.
Anal Chem ; 93(36): 12374-12382, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34460220

RESUMEN

Fourier transform ion cyclotron resonance (FT-ICR) and Orbitrap mass spectrometry (MS) are among the highest-performing analytical platforms used in metabolomics. Non-targeted metabolomics experiments, however, yield extremely complex datasets that make metabolite annotation very challenging and sometimes impossible. The high-resolution accurate mass measurements of the leading MS platforms greatly facilitate this process by reducing mass errors and spectral overlaps. When high resolution is combined with relative isotopic abundance (RIA) measurements, heuristic rules, and constraints during searches, the number of candidate elemental formula(s) can be significantly reduced. Here, we evaluate the performance of Orbitrap ID-X and 12T solariX FT-ICR mass spectrometers in terms of mass accuracy and RIA measurements and how these factors affect the assignment of the correct elemental formulas in the metabolite annotation pipeline. Quality of the mass measurements was evaluated under various experimental conditions (resolution: 120, 240, 500 K; automatic gain control: 5 × 104, 1 × 105, 5 × 105) for the Orbitrap MS platform. High average mass accuracy (<1 ppm for UPLC-Orbitrap MS and <0.2 ppm for direct infusion FT-ICR MS) was achieved and allowed the assignment of correct elemental formulas for over 90% (m/z 75-466) of the 104 investigated metabolites. 13C1 and 18O1 RIA measurements further improved annotation certainty by reducing the number of candidates. Overall, our study provides a systematic evaluation for two leading Fourier transform (FT)-based MS platforms utilized in metabolite annotation and provides the basis for applying these, individually or in combination, to metabolomics studies of biological systems.


Asunto(s)
Ciclotrones , Metabolómica , Análisis de Fourier , Iones , Espectrometría de Masas
9.
Glycobiology ; 30(3): 143-151, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31616929

RESUMEN

Urinary glycosaminoglycans (GAGs) can reflect the health condition of a human being, and the GAGs composition can be directly related to various diseases. In order to effectively utilize such information, a detailed understanding of urinary GAGs in healthy individuals can provide insight into the levels and structures of human urinary GAGs. In this study, urinary GAGs were collected and purified from healthy males and females of adults and young adults. The total creatinine-normalized urinary GAG content, molecular weight distribution and disaccharide compositions were determined. Using capillary zone electrophoresis (CZE)-mass spectrometry (MS) and CZE-MS/MS relying on negative electron transfer dissociation, the major components of healthy human urinary GAGs were determined. The structures of 10 GAG oligosaccharides representing the majority of human urinary GAGs were determined.


Asunto(s)
Glicosaminoglicanos/orina , Adulto , Conformación de Carbohidratos , Electroforesis Capilar , Femenino , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Adulto Joven
10.
Nat Chem Biol ; 14(3): 206-214, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443976

RESUMEN

Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.


Asunto(s)
Genoma Humano , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteoma/química , Proteómica/métodos , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas , Fenotipo , Biosíntesis de Proteínas , Isoformas de Proteínas/química , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA