Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38392724

RESUMEN

This scientific investigation emphasizes the essential integration of nature's influence in crafting multifunctional surfaces with bio-inspired designs for enhanced functionality and environmental advantages. The study introduces an innovative approach, merging color decoration, humidity sensing, and antiviral properties into a unified surface using chitosan, an organo-biological polymer, to create cost-effective multilayered films through sol-gel deposition and UV photoinduced deposition of metal nanoparticles. The resulting chitosan films showcase diverse structural colors and demonstrate significant antiviral efficiency, with a 50% and 85% virus inhibition rate within a rapid 20 min reaction, validated through fluorescence cell expression and real-time qPCR (polymerase chain reaction) assays. Silver-deposited chitosan films further enhance antiviral activity, achieving remarkable 91% and 95% inhibition in independent assays. These films exhibit humidity-responsive color modifications across a 25-90% relative humidity range, enabling real-time monitoring validated through simulation studies. The proposed three-in-one functional surface can have versatile applications in surface decoration, medicine, air conditioning, and the food industry. It can serve as a real-time humidity sensor for indoor and outdoor surfaces, find use in biomedical devices for continuous humidity monitoring, and offer antiviral protection for frequently handled devices and tools. The customizable colors enhance visual appeal, making it a comprehensive solution for diverse applications.

2.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947684

RESUMEN

Fluoride ion is essential for health in small amounts, but excessive intake can be toxic. Meeting safety regulations for managing fluoride ion emissions from industrial facilities with both cost-effective and eco-friendly approaches is challenging. This study presents a solution through a chemical-free process, producing a boehmite (AlOOH) adsorbent on aluminum sheets. Utilizing cost-effective Al foil and DI water, rather than typical precursors, yields a substantial cost advantage. The optimized AlOOH adsorbent demonstrated a high fluoride ion removal rate of 91.0% in simulated wastewater with fluoride ion concentrations below 20 ppm and displayed a similar performance in industrial wastewater. Furthermore, the AlOOH adsorbent exhibited excellent reusability through a simple regeneration process and maintained stable performance across a wide pH range of 4 to 11, demonstrating its capability to adsorb fluoride ions under diverse conditions. The efficiency of the AlOOH adsorbent was validated by a high fluoride ion removal efficiency of 90.9% in a semi-batch mode flow cell, highlighting its potential applicability in engineered water treatment systems. Overall, the AlOOH adsorbent developed in this study offers a cost-effective, eco-friendly, and sustainable solution for effectively removing fluoride ion from surface waters and industrial wastewaters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA