Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(14): e2308881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984861

RESUMEN

Organic electrodes that embrace multiple electron transfer and efficient redox reactions are desirable for green energy storage batteries. Here, a novel organic electrode material is synthesized, i.e., 2, 2'-((disulfanediylbis (4, 1-phenylene)) bis(azanediyl)) bis (naphthalene-1, 4-dione) (MNQ), through a simple click reaction between common carbonyl and organosulfur compounds and demonstrate its application potential as a high-performance cathode material in rechargeable lithium batteries. MNQ exhibits the aggregation effect of redox-active functional groups, the advantage of fast reaction kinetics from molecular structure evolution, and the decreased solubility in aprotic electrolytes resulting from intermolecular interactions. As expected, the MNQ electrode exhibits a high initial discharge capacity of 281.2 mA h g-1 at 0.5 C, equivalent to 97.9% of its theoretical capacity, and sustains stable long-term cycling performance of over 1000 cycles at 1 C. This work adds a new member to the family of organic electrode materials, providing performance-efficient organic molecules for the design of rechargeable battery systems, which will undoubtedly spark great interest in their applications.

2.
Transl Cancer Res ; 13(8): 4389-4407, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262465

RESUMEN

Background: According to statistics, colon adenocarcinoma (COAD) ranks third in global incidence and second in mortality. The role of N6-methyladenosine (m6A) modification-dependent ferroptosis in tumor development and progression is gaining attention. Therefore, it is meaningful to explore the biological functions mediated by m6A ferroptosis related genes (m6A-Ferr-RGs) in the prognosis and treatment of COAD. This study aimed to explore the regulatory mechanisms and prognostic features of m6A-Ferr-RGs in COAD based on the COAD transcriptome dataset. Methods: The expression data of Ferr-RGs and the correlated analysis with prognosis related m6A regulators were conducted to obtain candidate m6A-Ferr-RGs. Then, the differentially expressed genes (DEGs) between COAD and normal samples were intersected with candidate m6A-Ferr-RGs to obtain differentially expressed m6A Ferr-RGs (DE-m6A-Ferr-RGs) in COAD. Cox regression analyses were performed to establish risk model and validated in the GSE17538 and GSE41258 datasets. The nomogram was constructed and verified by calibration curves. Moreover, tumor immune dysfunction and exclusion (TIDE) was used to assess immunotherapy response in two risk groups. Finally, the expression of m6A-Ferr-related prognostic genes was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: In total, 6 model genes (HSD17B11, VEGFA, CXCL2, ASNS, FABP4, and GPX2) were obtained to construct the risk model. The nomogram was established based on the independent prognostic factors for predicting survival of COAD. TIDE assessed that the high-risk group suffered from greater immune resistance. Ultimately, the experimental results confirmed that the expression trends of all model genes were consistent among data from public database. Conclusions: In this study, m6A-Ferr-related prognostic model for COAD was constructed using transcriptome data and clinical data of COAD in public database, which may have potential immunotherapy and chemotherapy guidance implications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA