RESUMEN
Major histocompatibility complex (MHC) class I molecules play an essential role in regulating the adaptive immune system by presenting antigens to CD8 T cells. CITA (MHC class I transactivator), also known as NLRC5 (NLR family, CARD domain-containing 5), regulates the expression of MHC class I and essential components involved in the MHC class I antigen presentation pathway. While the critical role of the nuclear distribution of NLRC5 in its transactivation activity has been known, the regulatory mechanism to determine the nuclear localization of NLRC5 remains poorly understood. In this study, a comprehensive analysis of all domains in NLRC5 revealed that the regulatory mechanisms for nuclear import and export of NLRC5 coexist and counterbalance each other. Moreover, GCN5 (general control non-repressed 5 protein), a member of HATs (histone acetyltransferases), was found to be a key player to retain NLRC5 in the nucleus, thereby contributing to the expression of MHC class I. Therefore, the balance between import and export of NLRC5 has emerged as an additional regulatory mechanism for MHC class I transactivation, which would be a potential therapeutic target for the treatment of cancer and virus-infected diseases.
Asunto(s)
Transporte Activo de Núcleo Celular , Antígenos de Histocompatibilidad Clase I , Péptidos y Proteínas de Señalización Intracelular , Activación Transcripcional , Humanos , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/genéticaRESUMEN
Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Ratones , Animales , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Prohibitinas , Genes myc , ARN Mensajero/genéticaRESUMEN
IFN-stimulated genes (ISGs) can act as effector molecules against viral infection and can also regulate pathogenic infection and host immune response. N-Myc and STAT interactor (Nmi) is reported as an ISG in mammals and in fish. In this study, the expression of Nmi was found to be induced significantly by the infection of Siniperca chuatsi rhabdovirus (SCRV), and the induced expression of type I IFNs after SCRV infection was reduced following Nmi overexpression. It is observed that Nmi can interact with IRF3 and IRF7 and promote the autophagy-mediated degradation of these two transcription factors. Furthermore, Nmi was found to be interactive with IFP35 through the CC region to inhibit IFP35 protein degradation, thereby enhancing the negative role in type I IFN expression after viral infection. In turn, IFP35 is also capable of protecting Nmi protein from degradation through its N-terminal domain. It is considered that Nmi and IFP35 in fish can also interact with each other in regulating negatively the expression of type I IFNs, but thus in enhancing the replication of SCRV.
Asunto(s)
Interferón Tipo I , Péptidos y Proteínas de Señalización Intracelular , Animales , Interferón Tipo I/metabolismo , PecesRESUMEN
The type IV IFN (IFN-υ) is reported in vertebrates from fish to primary mammals with IFN-υR1 and IL-10R2 as receptor subunits. In this study, the proximal promoter of IFN-υ was identified in the amphibian model, Xenopus laevis, with functional IFN-sensitive responsive element and NF-κB sites, which can be transcriptionally activated by transcription factors, such as IFN regulatory factor (IRF)1, IRF3, IRF7, and p65. It was further found that IFN-υ signals through the classical IFN-stimulated gene (ISG) factor 3 (ISGF3) to induce the expression of ISGs. It seems likely that the promoter elements of the IFN-υ gene in amphibians is similar to type III IFN genes, and that the mechanism involved in IFN-υ induction is very much similar to type I and III IFNs. Using recombinant IFN-υ protein and the X. laevis A6 cell line, >400 ISGs were identified in the transcriptome, including ISGs homologous to humans. However, as many as 268 genes were unrelated to human or zebrafish ISGs, and some of these ISGs were expanded families such as the amphibian novel TRIM protein (AMNTR) family. AMNTR50, a member in the family, was found to be induced by type I, III, and IV IFNs through IFN-sensitive responsive element sites of the proximal promoter, and this molecule has a negative role in regulating the expression of type I, III, and IV IFNs. It is considered that the current study contributes to the understanding of transcription, signaling, and functional aspects of type IV IFN at least in amphibians.
Asunto(s)
Interferón Tipo I , Interferones , Animales , Humanos , Xenopus laevis , Interferones/genética , Interferones/metabolismo , Pez Cebra/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Interferón Tipo I/metabolismo , Mamíferos/metabolismoRESUMEN
BACKGROUND: Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks. METHODS: The RNA sequencing results of migraineurs and the panglaodb database were used to obtain differentially expressed genes (DEGs) in migraine related to microglia. A migraine rat model was established for validating and localizing of the MRGs, and subsequent screening for target genes was conducted. A shRNA was designed to interference the expression of target genes and administered into the trigeminal ganglion (TG) of rats. Pain sensitivity in rats was evaluated via the hot water tail-flick (HWTF) and formalin-induced pain (FIP) experiments. ELISA was used to quantify the levels of inflammatory cytokines and CGRP. WB and immunofluorescence assays were applied to detect the activation of microglia. RESULTS: A total of five DEGs in migraine related to microglia were obtained from RNA sequencing and panglaodb database. Animal experiments showed that these genes expression were heightened in the TG and medulla oblongata (MO) of migraine rats. The gene S100A8 co-localized with microglia in both TG and MO. The HWTF and FIP experiments demonstrated that interference with S100A8 alleviated the sense of pain in migraine rats. Moreover, the levels of TNFα, IL-1ß, IL-6, and CGRP in the TG and MO of rats in the model rats were increased, and the expression of microglia markers IBA-1, M1 polarization markers CD86 and iNOS was upregulated. Significantly, interference with S100A8 reversed these indicators. CONCLUSION: Interference with S100A8 in microglia increased the pain threshold during migraine attacks, and inhibited neuroinflammation and microglia activation.
Asunto(s)
Calgranulina A , Microglía , Trastornos Migrañosos , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Animales , Microglía/metabolismo , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/genética , Ratas , Masculino , Calgranulina A/metabolismo , Calgranulina A/genética , Enfermedades Neuroinflamatorias/metabolismo , Ganglio del Trigémino/metabolismo , Modelos Animales de EnfermedadRESUMEN
Efficient n = O bond activation is crucial for the catalytic reduction of nitrogen compounds, which is highly affected by the construction of active centers. In this study, n = O bond activation was achieved by a single-atom catalyst (SAC) with phosphorus anchored on a Co active center to form intermediate N-species for further hydrogenation and reduction. Unique phosphorus-doped discontinuous active sites exhibit better n = O activation performance than conventional N-cooperated single-atom sites, with a high Faradic efficiency of 92.0% and a maximum ammonia yield rate of 433.3 µg NH4·h-1·cm-2. This approach of constructing environmental sites through heteroatom modification significantly improves atom efficiency and will guide the design of future functional SACs with wide-ranging applications.
RESUMEN
Coumarins are a vast family of natural products with diverse biological activities. Cinnamyl-CoA ortho-hydroxylases (CCHs) catalyze the gateway and rate-limiting step in coumarin biosynthesis. However, engineering CCHs is challenging due to the large size of the substrates and the vague structure-activity relationship. Herein, directed evolution and structure-guided engineering were performed to engineer a CCH (AtF6'H from Arabidopsis thaliana) using a fluorescence-based screening method, yielding the transplantable surface mutations and the substrate-specific pocket mutations with improved activity. Structural analysis and molecular dynamics simulations elucidated the conformational changes that led to increased catalytic efficiency. Applying appropriate variants with the optimized upstream biosynthetic pathways improved the titers of three simple coumarins by 5 to 22-fold. Further introducing glycosylation modules resulted in the production of four coumarin glucosides, among which the titer of aesculin was increased by 15.7-fold and reached 3 g/L in scale-up fermentation. This work unleashed the potential of CCHs and established an Escherichia coli platform for coumarins production.
RESUMEN
Intestinal injury is one of the most debilitating side effects of many chemotherapeutic agents, such as irinotecan hydrochloride (CPT-11). Accumulating evidence indicates that neutrophil extracellular traps (NETs) play a critical role in the symptoms of ischemia and inflammation related to chemotherapy. The present study investigated the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating chemotherapeutic intestinal injury. CPT-11 induced robust neutrophil activation, as evidenced by increased NETs release, intestinal ischemia, and mRNA expression of inflammatory factors. PEITC prolonged the clotting time of chemotherapeutic mice, improved the intestinal microcirculation, inhibited the expression of inflammatory factors, and protected the tight junctions of the intestinal epithelium. Both in vivo and in vitro experiments revealed that PEITC directly suppresses CPT-11-induced NETs damage to intestinal cells, resulting in significant attenuation of epithelial injury. These results suggest that PEITC may be a novel agent to relieve chemotherapeutic intestinal injury via inhibition of NETs.
Asunto(s)
Trampas Extracelulares , Enfermedades Intestinales , Animales , Ratones , Irinotecán , Isotiocianatos/farmacología , IsquemiaRESUMEN
The ultrasensitive magnetometer has a vital importance in fundamental research and applications. Currently, the spin-exchange relaxation-free (SERF) atomic magnetometer has been reported with a sensitivity around the level of fT/Hz1/2. To enhance the sensitivity, a gradiometer configuration has usually been introduced to cancel the common-mode noise between two separate channels. However, the signal and response from different channels are not the same due to the attenuation of the pump beam. Here, we proposed a counter-propagating optical sideband pumping method to polarize the atoms, using the electro-optic modulator to modulate the single-pump beam, generating two symmetrically red- and blue-detuned sidebands of frequency. This scheme leads to a significant reduction of undesirable effects coming along with the optical pumping, such as light shifts and spatial inhomogeneity in atomic spin polarization. With the help of this pumping scheme, the two channels have the same magnetic response, and we have built a gradiometer atomic magnetometer with a sensitivity of 0.5 fT/Hz1/2 ranging from 5 to 40 Hz. Our results propose the possibility of creating larger arrays of atomic magnetometers (AMs) with high sensitivity and spatial resolution based on single-vapor cells for magnetocardiography and magnetoencephalography imaging or searching for exotic spin-dependent interactions.
RESUMEN
High-sensitivity magnetometry has found important applications in fields ranging from basic science studies such as searching for dark matter and exotic particles to more practical tasks in geology, archaeology, navigation, and biomedicine. Currently, the performance of typical high-sensitivity magnetometers is limited by the required stringent operation environment, such as cryogenic conditions for superconducting quantum interference device magnetometers and near-zero-field environments for spin-exchange-relaxation-free atomic magnetometers. This Letter reports a high-sensitivity solid-state magnetometer based on a magnetostrictive gap-swing Fabry-Pérot cavity optomechanical system that is capable of benchmark performance at ambient environment conditions. Thanks to the strong resonance enhancement of the gap-swing mechanical mode, it achieves a sensitivity of 620 fT Hz^{-1/2} at room temperature and under the Earth's magnetic field, and is expected to approach the thermal-noise-limited sensitivity of 5.9 fT Hz^{-1/2} by controlling the optomechanical coupling. Our Letter opens the avenue toward the application of portable and low-maintenance high-sensitivity magnetometry in broad fields.
RESUMEN
Platelet-rich plasma (PRP) has significant potential for various applications and holds clinical value in regenerative medicine. Cryopreservation is used to extend the preservation period of PRP, facilitating its clinical application. However, the potential negative effects of long-term cryopreservation on platelet storage lesion are still uncertain. In this study, PRP was stored at - 30 °C or - 80 °C. Platelet count, apoptosis, reactive oxygen species (ROS) content, and CD62P expression were assessed on the 14th and 28th days. The study also evaluated platelet mitochondria morphology and function, serotonin (5-HT) secretion by platelets, and the inflammatory activating effect of cryopreserved platelets in PRP. The results showed that there were no significant differences in platelet count, the content of 5-HT, and inflammatory effects between fresh PRP and PRP cryopreserved at both - 30 °C and - 80 °C. However, there was an increase in ROS level, apoptosis, and CD62P level after cryopreservation at both temperatures. Additionally, the levels of ROS, apoptosis, and CD62P in platelets were similar after storage at - 30 °C and - 80 °C. The main difference observed was that the morphology and function of mitochondria were severely damaged after storage at - 30 °C, while they were less affected at - 80 °C. Based on these findings, it can be concluded that storing PRP at - 80 °C is more suitable for achieving a better therapeutic effect in clinical applications, but cryopreservation could not replace the current standard.
Asunto(s)
Plasma Rico en Plaquetas , Serotonina , Humanos , Especies Reactivas de Oxígeno , Serotonina/metabolismo , Serotonina/farmacología , Conservación de la Sangre/métodos , Plaquetas/metabolismo , Criopreservación/métodosRESUMEN
1,5-Pentanediol (1,5-PDO) is an important five-carbon alcohol, widely used in polymer and pharmaceutical industries. Considering the substantial energy (ATP and NADPH) requirements of previous pathways, an energy-conserving artificial pathway with a higher theoretical yield (0.75 mol/mol glucose) was designed and constructed in this study. In this pathway, lysine is converted into 1,5-PDO by decarboxylation, two transamination, and two reduction reactions. For the purpose of full pathway construction, 5-aminopetanal reductase and 5-amino-1-pentanol (5-APO) transaminase were identified and characterized. By implementing strategies such as modular optimization of gene expression, enhancing lysine biosynthesis and increasing NADPH supply, the engineered strains were able to produce 1502.8 mg/L 5-APO and 726.2 mg/L 1,5-PDO in shake flasks and 11.7 g/L 1,5-PDO in a 3 L bioreactor. This work provides a new and promising pathway for the efficient production of 5-APO and 1,5-PDO.
RESUMEN
Gallic acid (GA) and ß-glucogallin (BGG) are natural products with diverse uses in pharmaceutical, food, chemical and cosmetic industries. They are valued for their wide-ranging properties such as antioxidant, antibacterial, antidiabetic, and anticancer properties. Despite their significant importance, microbial production of GA and BGG faces challenges such as limited titers and yields, along with the incomplete understanding of BGG biosynthesis pathways in microorganisms. To address these challenges, we developed a recombinant Escherichia coli strain capable of efficiently producing GA. Our approach involved screening efficient pathway enzymes, integrating biosynthetic pathway genes into the genome while balancing carbon flux via adjusting expression levels, and strengthening the shikimate pathway to remove bottlenecks. The resultant strain achieved impressive results, producing 51.57 g/L of GA with a carbon yield of 0.45 g/g glucose and a productivity of 1.07 g/L/h. Furthermore, we extended this microbial platform to biosynthesize BGG by screening GA 1-O-glucosyltransferase, leading to the de novo production of 92.42 mg/L of BGG. This work establishes an efficient chassis for producing GA at an industrial level and provides a microbial platform for generating GA derivatives.
Asunto(s)
Escherichia coli , Ácido Gálico , Ingeniería Metabólica , Ácido Gálico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Glucósidos/metabolismo , Glucósidos/biosíntesis , Vías Biosintéticas/genética , Taninos HidrolizablesRESUMEN
Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.
Asunto(s)
Secuencia de Aminoácidos , Infecciones por Virus ADN , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Iridoviridae , Perciformes , Filogenia , Alineación de Secuencia , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Perciformes/inmunología , Perciformes/genética , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Iridoviridae/fisiología , Alineación de Secuencia/veterinaria , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Clonación Molecular , Perfilación de la Expresión Génica/veterinaria , Secuencia de BasesRESUMEN
SIRT6, a key member of the sirtuin family, plays a pivotal role in regulating a number of vital biological processes, including energy metabolism, oxidative stress, and immune system modulation. Nevertheless, the function of SIRT6 in bony fish, particularly in the context of antiviral immune response, remains largely unexplored. In this study, a sirt6 was cloned and characterized in a commercial fish, the Chinese perch (Siniperca chuatsi). The SIRT6 possesses conserved SIR2 domain with catalytic core region when compared with other vertebrates. Tissue distribution analysis indicated that sirt6 was expressed in all detected tissues, and the sirt6 was significantly induced following infection of infectious haemorrhagic syndrome virus (IHSV). The overexpression of SIRT6 resulted in significant upregulation of interferon-stimulated genes (ISGs), such as viperin, mx, isg15, irf3 and ifp35, and inhibited viral replication. It was further found that SIRT6 was located in nucleus and could enhance the expression of ISGs induced by type I and II IFNs. These findings may provide new information in relation with the function of SIRT6 in vertebrates, and with viral prevention strategy development in aquaculture.
Asunto(s)
Secuencia de Aminoácidos , Enfermedades de los Peces , Proteínas de Peces , Regulación de la Expresión Génica , Inmunidad Innata , Percas , Filogenia , Infecciones por Rhabdoviridae , Sirtuinas , Animales , Sirtuinas/genética , Sirtuinas/inmunología , Sirtuinas/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Inmunidad Innata/genética , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Regulación de la Expresión Génica/inmunología , Percas/inmunología , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinariaRESUMEN
PURPOSE: To characterize patients with cytomegalovirus (CMV) retinitis and identify risk factors for retinal detachment (RD) and mortality in this Taiwanese patient population. METHODS: This retrospective study included patients diagnosed with CMV retinitis between 2007 and 2019. The diagnosis was confirmed through aqueous polymerase chain reaction (PCR). Relevant data were collected from the Chang Gung Research Database. Univariate Cox regression was performed to identify the associations of RD and mortality risks with various patient characteristics, including demographic features, comorbidities, laboratory results, and medication use patterns. RESULTS: In total, 32 patients with CMV retinitis were included. Among these patients, 78.1% had an immunocompromised status, including 56.3% with high-dose systemic steroid use, 21.9% with HIV infection, 12.5% with hematologic malignancy, and 9.4% with renal transplantation. Approximately 21.9% of patients had RD 2.4 ± 2.1 months after CMV retinitis diagnosis, and 34.4% died within 6.2 [4.2, 38.2] months after diagnosis. Patients with RD had a statistically significant, but likely not clinically significant, later initiation of anti-CMV medications compared to their non-RD counterparts (8 [5, 23] days vs. 2 [1, 11] days, p = 0.039). Mortality was significantly associated with older age (hazard ratio [HR]: 1.06; 95% confidence interval [CI]: 1.02-1.10), hematologic malignancy (HR: 5.92; 95% CI: 1.44-24.37), and positivity for CMV on blood PCR (HR: 4.93; 95% CI: 1.49-16.35). CONCLUSION: Our study suggests that older age, hematologic malignancy, and positivity for CMV on blood PCR are risk factors for mortality in patients with CMV retinitis. KEY MESSAGES: What is known Cytomegalovirus (CMV) retinitis is the predominant sight-threatening opportunistic ocular infection in patients with acquired immunodeficiency syndrome (AIDS). What is new In the era of highly active antiretroviral therapy for AIDS, the majority of CMV retinitis patients are those receiving immunomodulatory therapy for underlying diseases. Older age, hematologic malignancy, and positive blood polymerase chain reaction for CMV are potential risk factors for mortality in patients with CMV retinitis.
RESUMEN
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1(IDH-1) mutation and Ki-67 expression in glioma. METHODS: The DWI, DCE and APTW images of 309 patients with glioma confirmed by pathology were retrospectively analyzed and divided into the IDH-1 group (IDH-1(+) group and IDH-1(-) group) and Ki-67 group (low expression group (Ki-67 ≤ 10%) and high expression group (Ki-67 > 10%)). All cases were divided into the training set, and validation set according to the ratio of 7:3. The training set was used to select features and establish machine learning models. The SVM model was established with the data after feature selection. Four single sequence models and one combined model were established in IDH-1 group and Ki-67 group. The receiver operator characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. Validation set data was used for further validation. RESULTS: Both in the IDH-1 group and Ki-67 group, the combined model had better predictive efficiency than single sequence model, although the single sequence model had a better predictive efficiency. In the Ki-67 group, the combined model was built from six selected radiomics features, and the AUC were 0.965 and 0.931 in the training and validation sets, respectively. In the IDH-1 group, the combined model was built from four selected radiomics features, and the AUC were 0.997 and 0.967 in the training and validation sets, respectively. CONCLUSION: The radiomics model established by DWI, DCE and APTW images could be used to detect IDH-1 mutation and Ki-67 expression in glioma patients before surgery. The prediction performance of the radiomics model based on the combination sequence was better than that of the single sequence model.
Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Antígeno Ki-67 , Mutación , Máquina de Vectores de Soporte , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Persona de Mediana Edad , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Masculino , Estudios Retrospectivos , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Multimodal , Adulto Joven , Imagen por Resonancia Magnética/métodos , Curva ROC , Medios de ContrasteRESUMEN
Nitrate, a widespread contaminant in natural water, is a threat to ecological safety and human health. Although direct nitrate removal by electrochemical methods is efficient, the development of low-cost electrocatalysts with high reactivity remains challenging. Herein, bifunctional single-atom catalysts (SACs) were prepared with Cu or Fe active centers on an N-doped or S, N-codoped carbon basal plane for N2 or NH4+ production. The maximum nitrate removal capacity was 7,822 mg N â g-1 Fe, which was the highest among previous studies. A high ammonia Faradic efficiency (78.4%) was achieved at a low potential (-0.57 versus reversible hydrogen electrode), and the nitrogen selectivity was 100% on S-modified Fe SACs. Theoretical and experimental investigations of the S-doping charge-transfer effect revealed that strong metal-support interactions were beneficial for anchoring single atoms and enhancing cyclability. S-doping altered the coordination environment of single-atom centers and created numerous defects with higher conductivity, which played a key role in improving the catalyst activity. Moreover, interactions between defects and single-atom sites improved the catalytic performance. Thus, these findings offer an avenue for high active SAC design.
RESUMEN
Whole-genome duplication (WGD) plays important roles in plant evolution and function, yet little is known about how WGD underlies metabolic diversification of natural products that bear significant medicinal properties, especially in nonmodel trees. Here, we reveal how WGD laid the foundation for co-option and differentiation of medicinally important ursane triterpene pathway duplicates, generating distinct chemotypes between species and between developmental stages in the apple tribe. After generating chromosome-level assemblies of a widely cultivated loquat variety and Gillenia trifoliata, we define differentially evolved, duplicated gene pathways and date the WGD in the apple tribe at 13.5 to 27.1 Mya, much more recent than previously thought. We then functionally characterize contrasting metabolic pathways responsible for major triterpene biosynthesis in G. trifoliata and loquat, which pre- and postdate the Maleae WGD, respectively. Our work mechanistically details the metabolic diversity that arose post-WGD and provides insights into the genomic basis of medicinal properties of loquat, which has been used in both traditional and modern medicines.
Asunto(s)
Eriobotrya/genética , Duplicación de Gen , Poliploidía , Triterpenos/metabolismo , Vías Biosintéticas , Eriobotrya/metabolismo , Genoma de PlantaRESUMEN
Spinal muscular atrophy (SMA) is a neuromuscular disorder with an autosomal recessive inheritance pattern. Patients with severe symptoms may suffer respiratory failure, leading to death. The homozygous deletion of exon 7 in the SMN1 gene accounts for nearly 95% of all cases. Population carrier screening for SMA and prenatal diagnosis by amniocentesis for high-risk couples can assist in identifying the risk of fetal disease. We provided the SMA carrier screening process to 55,447 pregnant women in Yancheng from October 2020 to December 2022. Among them, 8185 participated in this process, with a participation rate of around 14.76% (95% CI 14.47-15.06%). Quantitative real-time polymerase chain reaction (qPCR) was used to detect deletions of SMN1 exons 7 and 8 (E7, E8) in screened pregnant women. 127 were identified as carriers (111 cases of E7 and E8 heterozygous deletions, 15 cases of E7 heterozygous deletions, and 1 case of E7 heterozygous deletions and E8 homozygous deletions), resulting in a carrying rate of around 1.55% (95% CI 1.30-1.84%). After genetic counseling, 114 spouses of pregnant women who tested positive underwent SMA carrier screening; three of them were screened as SMA carriers. Multiplexed ligation-dependent probe amplification (MLPA) was used for the prenatal diagnosis of the fetuses of high-risk couples. Two of them exhibited two copies of SMN1 exon 7 (normal), and the pregnancy was continued; one exhibited no copies of SMN1 exon 7 and exon 8 (SMA patient), and the pregnancy was terminated. Analyzing SMN1 mutations in Yancheng and provide clinical evidence for SMA genetic counseling and birth defect prevention. Interventional prenatal diagnosis for high-risk families can promote informed reproductive selection and prepare for the fetus's early treatment.