Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Chem Chem Phys ; 23(21): 12387-12394, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34027528

RESUMEN

Ionic liquids (ILs) are emerging as novel solvents that exhibit peculiar mechanical properties in the form of thin films on metal surfaces under normal pressure. However, the mechanical properties of ILs in the form of nano-meniscus have not been analyzed yet. Here, we investigate the shear viscoelasticity of a single IL meniscus at the nanoscale. To characterize the shear rheological properties of ILs, we employ a quartz tuning fork-based atomic force microscope, conduct dynamic force spectroscopy, and analyse shear properties using the non-Newtonian-Maxwell model. The elastic response of the IL nanomeniscus is found to be about 25 times higher than that of the bulk IL bridge, whereas the viscous responses are similar. In addition, by conducting shear velocity-dependent measurements, we find that the IL meniscus shows nonlinear rheological behaviours. Interestingly, we observe that the relaxation time of the IL increases at a tip-substrate distance of about 60 nm.

2.
Proc Natl Acad Sci U S A ; 115(12): 2884-2889, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29511105

RESUMEN

Buckling, first introduced by Euler in 1744 [Euler L (1744) Opera Omnia I 24:231], a sudden mechanical sideways deflection of a structural member under compressive stress, represents a bifurcation in the solution to the equations of static equilibrium. Although it has been investigated in diverse research areas, such a common nonlinear phenomenon may be useful to devise a unique mechanical sensor that addresses the still-challenging features, such as the enhanced sensitivity and polarization-dependent detection capability. We demonstrate the bifurcation-enhanced sensitive measurement of mechanical vibrations using the nonlinear buckled cantilever tip in ambient conditions. The cantilever, initially buckled with its tip pinned, flips its buckling near the bifurcation point (BP), where the buckled tip becomes softened. The enhanced mechanical sensitivity results from the increasing fluctuations, unlike the typical linear sensors, which facilitate the noise-induced buckling-to-flipping transition of the softened cantilever. This allows the in situ continuous or repeated single-shot detection of the surface acoustic waves of different polarizations without any noticeable wear of the tip. We obtained the sensitivity above 106 V(m/s)-1, a 1,000-fold enhancement over the conventional seismometers. Our results lead to development of mechanical sensors of high sensitivity, reproducibility, and durability, which may be applied to detect, e.g., the directional surface waves on the laboratory as well as the geological scale.

3.
Sensors (Basel) ; 19(8)2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30991660

RESUMEN

We introduce a nanopipette/quartz tuning fork (QTF)-atomic force microscope (AFM) for nanolithography and a nanorod/QTF-AFM for nanoscratching with in situ detection of shear dynamics during performance. Capillary-condensed nanoscale water meniscus-mediated and electric field-assisted small-volume liquid ejection and nanolithography in ambient conditions are performed at a low bias voltage (~10 V) via a nanopipette/QTF-AFM. We produce and analyze Au nanoparticle-aggregated nanowire by using nanomeniscus-based particle stacking via a nanopipette/QTF-AFM. In addition, we perform a nanoscratching technique using in situ detection of the mechanical interactions of shear dynamics via a nanorod/QTF-AFM with force sensor capability and high sensitivity.

4.
Sensors (Basel) ; 19(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31207882

RESUMEN

A quartz tuning fork and its qPlus configuration show different characteristics in their dynamic features, including peak amplitude, resonance frequency, and quality factor. Here, we present an electromechanical model that comprehensively describes the dynamic responses of an electrically driven tuning fork and its qPlus configuration. Based on the model, we theoretically derive and experimentally validate how the peak amplitude, resonance frequency, quality factor, and normalized capacitance are changed when transforming a tuning fork to its qPlus configuration. Furthermore, we introduce two experimentally measurable parameters that are intrinsic for a given tuning fork and not changed by the qPlus configuration. The present model and analysis allow quantitative prediction of the dynamic characteristics in tuning fork and qPlus, and thus could be useful to optimize the sensors' performance.

5.
Proc Natl Acad Sci U S A ; 112(51): 15619-23, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644571

RESUMEN

Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.

6.
Sensors (Basel) ; 18(8)2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30103506

RESUMEN

Mechanical sensors provide core keys for high-end research in quantitative understanding of fundamental phenomena and practical applications such as the force or pressure sensor, accelerometer and gyroscope. In particular, in situ sensitive and reliable detection is essential for measurements of the mechanical vibration and displacement forces in inertial sensors or seismometers. However, enhancing sensitivity, reducing response time and equipping sensors with a measurement capability of bidirectional mechanical perturbations remains challenging. Here, we demonstrate the buckling cantilever-based non-linear dynamic mechanical sensor which addresses intrinsic limitations associated with high sensitivity, reliability and durability. The cantilever is attached on to a high-Q tuning fork and initially buckled by being pressed against a solid surface while a flexural stress is applied. Then, buckling instability occurs near the bifurcation region due to lateral movement, which allows high-sensitive detection of the lateral and perpendicular surface acoustic waves with bandwidth-limited temporal response of less than 1 ms.

7.
Nano Lett ; 17(9): 5587-5594, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28770607

RESUMEN

The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.

8.
Anal Chem ; 89(5): 2687-2691, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28192901

RESUMEN

Concurrent mapping of chemical reactivity and morphology of heterogeneous electrocatalysts at the nanoscale allows identification of active areas (protrusions, flat film surface, or cracks) responsible for productive chemistry in these materials. Scanning electrochemical microscopy (SECM) can map surface characteristics, record catalyst activity, and identify chemical products at solid-liquid electrochemical interfaces. It lacks, however, the ability to distinguish topographic features where surface reactivity occurs. Here, we report the design and fabrication of scanning probe tips that combine SECM with atomic force microscopy (AFM) to perform measurements at the nanoscale. Our probes are fabricated by integrating nanoelectrodes with quartz tuning forks (QTFs). Using a calibration standard fabricated in our lab to test our probes, we obtain simultaneous topographic and electrochemical reactivity maps with a lateral resolution of 150 nm.

9.
Proc Natl Acad Sci U S A ; 111(16): 5784-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711400

RESUMEN

Titania, which exhibits superwetting under light illumination, has been widely used as an ideal material for environmental solution such as self-cleaning, water-air purification, and antifogging. There have been various studies to understand such superhydrophilic conversion. The origin of superwetting has not been clarified in a unified mechanism yet, which requires direct experimental investigation of the dynamic processes of water-layer growth. We report in situ measurements of the growth rate and height of the photo-adsorbed water layers by tip-based dynamic force microscopy. For nanocrystalline anatase and rutile TiO2 we observe light-induced enhancement of the rate and height, which decrease after O2 annealing. The results lead us to confirm that the long-range attraction between water molecules and TiO2, which is mediated by delocalized electrons in the shallow traps associated with O2 vacancies, produces photo-adsorption of water on the surface. In addition, molecular dynamics simulations clearly show that such photo-adsorbed water is critical to the zero contact angle of a water droplet spreading on it. Therefore, we conclude that this "water wets water" mechanism acting on the photo-adsorbed water layers is responsible for the light-induced superwetting of TiO2. Similar mechanism may be applied for better understanding of the hydrophilic conversion of doped TiO2 or other photo-catalytic oxides.

10.
Phys Chem Chem Phys ; 18(39): 27684-27690, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27711598

RESUMEN

The viscometry of minute amounts of liquid has been in high demand as a novel tool for medical diagnosis and biological assays. Various microrheological techniques have shown the capability to handle small volumes. However, as the liquid volume decreases down to nanoliter scale, increasingly dominant surface effects complicate the measurement and analysis, which remain a challenge in microrheology. Here, we demonstrate an atomic force microscope-based platform that determines the viscosity of single sessile drops of 1 nanoliter Newtonian fluids. We circumvent interfacial effects by measuring the negative-valued shear elasticity, originating from the retarded fluidic response inside the drop. Our measurement is independent of the liquid-boundary effects, and thus is valid without a priori knowledge of surface tension or contact angle, and consistently holds at a 1 milliliter-scale volume. Importantly, while previous methods typically need a much larger 'unrecoverable' volume above 1 microliter, our simple platform uses only ∼1 nanoliter. Our results offer a quantitative and unambiguous methodology for viscosity measurements of extremely minute volumes of Newtonian liquids on the nanoliter scale.

11.
Qual Health Res ; 26(8): 1044-54, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26265716

RESUMEN

Photovoice was used to understand the impact of childhood cancer on Korean young adult survivors. Seven survivors of childhood cancer (currently aged 20-27 years), diagnosed before the age of 19 and with cancer treatment completed, participated in five sessions. The participants took photographs that captured their group's weekly topics and participated in discussions about their feelings and experiences. Fifty-six photo images with narratives on the survivors' experiences were produced on these four participant-selected themes: Relationships With Others, Stigma, Overcoming Difficulties, and The Future This study on Korean childhood cancer survivors sheds light on their perspectives about the impact of cancer. Using an innovative methodology that takes the participants' point of view, this study contributes to the literature on young adult cancer survivors' quality of life and their psychosocial adjustment. The results can inform educational programs and increase public awareness by providing survivors' schoolteachers and peers with knowledge about childhood cancer.


Asunto(s)
Neoplasias , Calidad de Vida , Sobrevivientes/psicología , Adulto , Emociones , Femenino , Humanos , Masculino , Narración , Adulto Joven
12.
Nanotechnology ; 25(47): 475701, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25369864

RESUMEN

We present experimental and computational investigations of tetramodal and pentamodal atomic force microscopy (AFM), respectively, whereby the first four or five flexural eigenmodes of the cantilever are simultaneously excited externally. This leads to six to eight additional observables in the form of amplitude and phase signals, with respect to the monomodal amplitude modulation method. We convert these additional observables into three or four dissipation and virial expressions, and show that these quantities can provide enhanced contrast that would otherwise remain hidden in the original observables. We also show that the complexity of the multimodal impact leads to significant energy transfer between the active eigenmodes, such that the dissipated power for individual eigenmodes may be positive or negative, while the total dissipated power remains positive. These results suggest that the contrast of individual eigenmodes in multifrequency AFM should be not be considered in isolation and that it may be possible to use different eigenfrequencies to probe sample properties that respond to different relaxation times.

13.
Nano Converg ; 11(1): 4, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279984

RESUMEN

Halide perovskites have emerged as promising materials for various optoelectronic devices because of their excellent optical and electrical properties. In particular, halide perovskite quantum dots (PQDs) have garnered considerable attention as emissive materials for light-emitting diodes (LEDs) because of their higher color purities and photoluminescence quantum yields compared to conventional inorganic quantum dots (CdSe, ZnSe, ZnS, etc.). However, PQDs exhibit poor structural stabilities in response to external stimuli (moisture, heat, etc.) owing to their inherent ionic nature. This review presents recent research trends and insights into improving the structural stabilities of PQDs. In addition, the origins of the poor structural stabilities of PQDs and various methods to overcome this drawback are discussed. The structural degradation of PQDs is mainly caused by two mechanisms: (1) defect formation on the surface of the PQDs by ligand dissociation (i.e., detachment of weakly bound ligands from the surface of PQDs), and (2) vacancy formation by halide migration in the lattices of the PQDs due to the low migration energy of halide ions. The structural stabilities of PQDs can be improved through four methods: (1) ligand modification, (2) core-shell structure, (3) crosslinking, and (4) metal doping, all of which are presented in detail herein. This review provides a comprehensive understanding of the structural stabilities and opto-electrical properties of PQDs and is expected to contribute to future research on improving the device performance of perovskite quantum dot LEDs (PeLEDs).

14.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39365114

RESUMEN

Rheological characteristics exhibit significant variations at nanoscale confinement or near interfaces, compared to bulk rheological properties. To bridge the gap between nano- and bulk-scale rheology, allowing for a better and holistic understanding of rheology, developing a single experimental platform that provides rheological measurements across different scales, from nano to bulk, is desirable. Here, we present the novel methodology for multiscale rheology using a highly sensitive atomic force microscope based on a quartz tuning fork (QTF) force sensor. We employ microscale and nanoscale shear probes attached to the QTF, oscillating parallel to a substrate surface for rheological measurements as a function of the tip-substrate distance with sub-nanometer resolution. Silicone oils with viscosities ranging from 5 cSt to 10 000 cSt are used as calibration samples, and we have successfully derived the bulk rheological moduli. Furthermore, an increase in modulus is observed within the regime of tribo-nanorheology at distances less than 50 nm from the surface. Through such multiscale measurements, it is confirmed that this increase is due to the formation of a layered structure of silicone oil polymers on the solid surface. These results provide a comprehensive understanding of the tribo-rheological properties of complex fluids across different scales.

15.
Anim Cells Syst (Seoul) ; 28(1): 481-494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364144

RESUMEN

Quantum dots have diverse biomedical applications, from constructing biological infrastructures like medical imaging to advancing pharmaceutical research. However, concerns about human health arise due to the toxic potential of quantum dots based on heavy metals. Therefore, research on quantum dots has predominantly focused on oxidative stress, cell death, and other broader bodily toxicities. This study investigated the toxicity and cellular responses of mouse embryonic stem cells (mESCs) and mouse adult stem cells (mASCs) to nitrogen-doped carbon quantum dots (NCQDs) made of non-metallic materials. Cells were exposed to NCQDs, and we utilized a fluorescent ubiquitination-based cell system to verify whether NCQDs induce cytotoxicity. Furthermore, we validated the differentiation-inducing impact of NCQDs by utilizing embryonic stem cells equipped with the Oct4 enhancer-GFP reporter system. By analyzing gene expression including Crebzf, Chop, and ATF6, we also observed that NCQDs robustly elicited endoplasmic reticulum (ER) stress. We confirmed that NCQDs induced cytotoxicity and abnormal differentiation. Interestingly, we also confirmed that low concentrations of NCQDs stimulated cell proliferation in both mESCs and mASCs. In conclusion, NCQDs modulate cell death, proliferation, and differentiation in a concentration-dependent manner. Indiscriminate biological applications of NCQDs have the potential to cause cancer development by affecting normal cell division or to fail to induce normal differentiation by affecting embryonic development during pregnancy. Therefore, we propose that future biomedical applications of NCQDs necessitate comprehensive and diverse biological studies.

16.
Phys Rev Lett ; 111(24): 246102, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483679

RESUMEN

We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

17.
Nanoscale Adv ; 5(8): 2271-2279, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37056614

RESUMEN

Manipulating the surface chemistry of graphene is critical to many applications that are achievable by chemical functionalization. Specifically, tailoring the spatial distribution of functional groups offers more opportunities to explore functionality using continuous changes in surface energy. To this end, careful consideration is required to demonstrate the chemical gradient on graphene surfaces, and it is necessary to develop a technique to pattern the spatial distribution of functional groups. Here, we demonstrate the tailoring of a chemical gradient through direct mechanochemical cleavage of atoms from chemically functionalized graphene surfaces via an atomic force microscope. Additionally, we define the surface characteristics of the fabricated sample by using lateral force microscopy revealing the materials' intrinsic properties at the nanoscale. Furthermore, we perform the cleaning process of the obtained lateral force images by using a machine learning method of truncated singular value decomposition. This work provides a useful technique for many applications utilizing continuous changes in the surface energy of graphene.

18.
Nanoscale Adv ; 5(4): 1070-1078, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36798505

RESUMEN

The micropipette, pencil-shaped with an aperture diameter of a few micrometers, is a potentially promising tool for the three-dimensional (3D) printing of individual microstructures based on its capability to deliver low volumes of nanomaterial solution on a desired spot resulting in micro/nanoscale patterning. Here, we demonstrate a direct 3D printing technique in which a micropipette with a cadmium selenide (CdSe) quantum dot (QD) solution is guided by an atomic force microscope with no electric field and no piezo-pumping schemes. We define the printed CdSe QD wires, which are a composite material with a QD-liquid coexistence phase, by using photoluminescence and Raman spectroscopy to analyze their intrinsic properties and additionally demonstrate a means of directional falling.

19.
Allergy Asthma Immunol Res ; 15(3): 316-335, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37075797

RESUMEN

PURPOSE: Obstructive sleep apnea (OSA), a highly prevalent and potentially serious sleep disorder, requires effective screening tools. Saliva is a useful biological fluid with various metabolites that might also influence upper airway patency by affecting surface tension in the upper airway. However, little is known about the composition and role of salivary metabolites in OSA. Therefore, we investigated the metabolomics signature in saliva from the OSA patients and evaluated the associations between identified metabolites and salivary surface tension. METHODS: We studied 68 subjects who visited sleep clinic due to the symptoms of OSA. All underwent full-night in-lab polysomnography. Patients with apnea-hypopnea index (AHI) < 10 were classified to the control, and those with AHI ≥ 10 were the OSA groups. Saliva samples were collected before and after sleep. The centrifuged saliva samples were analyzed by liquid chromatography with high-resolution mass spectrometry (ultra-performance liquid chromatography-tandem mass spectrometry; UPLC-MS/MS). Differentially expressed salivary metabolites were identified using open source software (XCMS) and Compound Discoverer 2.1. Metabolite set enrichment analysis (MSEA) was performed using MetaboAnalyst 5.0. The surface tension of the saliva samples was determined by the pendant drop method. RESULTS: Three human-derived metabolites (1-palmitoyl-2-[5-hydroxyl-8-oxo-6-octenoyl]-sn-glycerol-3-phosphatidylcholine [PHOOA-PC], 1-palmitoyl-2-[5-keto-8-oxo-6-octenoyl]-sn-glycerol-3-phosphatidylcholine [KPOO-PC], and 9-nitrooleate) were significantly upregulated in the after-sleep salivary samples from the OSA patients compared to the control group samples. Among the candidate metabolites, only PHOOA-PC was correlated with the AHI. In OSA samples, salivary surface tension decreased after sleep. The differences in surface tension were negatively correlated with PHOOA-PC and 9-nitrooleate concentrations. Furthermore, MSEA revealed that arachidonic acid-related metabolism pathways were upregulated in the after-sleep samples from the OSA group. CONCLUSIONS: This study revealed that salivary PHOOA-PC was correlated positively with the AHI and negatively with salivary surface tension in the OSA group. Salivary metabolomic analysis may improve our understanding of upper airway dynamics and provide new insights into novel biomarkers and therapeutic targets in OSA.

20.
Nat Commun ; 14(1): 1891, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045823

RESUMEN

The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS2 monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons. These significantly increase the electrons and efficiently funnel excitons in the lateral MIM waveguide, facilitating complete exciton-to-trion conversion even at ambient conditions. Additionally, we modulate the SPP mode using adaptive wavefront shaping, enabling all-optical control of the exciton-to-trion conversion rate and trion distribution in a reversible manner. Our work provides a platform for harnessing excitonic quasiparticles efficiently in the form of trions at ambient conditions, enabling high-efficiency photoconversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA