Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nephrology (Carlton) ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075751

RESUMEN

AIM: Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulphide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. METHODS: Mice were randomly assigned to control, IRI and NaHS (an H2S donor, 28, 56 and 100 µmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. RESULTS: Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1 and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pre-treatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. CONCLUSION: These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.

2.
BMC Biotechnol ; 21(1): 39, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34126963

RESUMEN

BACKGROUND: HSPB5 is an ATP-independent molecular chaperone that is induced by heat shock or other proteotoxic stresses. HSPB5 is cytoprotective against stress both intracellularly and extracellularly. It acts as a potential therapeutic candidate in ischemia-reperfusion and neurodegenerative diseases. RESULTS: In this paper, we constructed a recombinant plasmid that expresses and extracellularly secrets a HSPB5-Fc fusion protein (sHSPB5-Fc) at 0.42 µg/ml in CHO-K1 cells. This sHSPB5-Fc protein contains a Fc-tag at the C-terminal extension of HSPB5, facilitating protein-affinity purification. Our study shows that sHSPB5-Fc inhibits heat-induced aggregation of citrate synthase in a time and dose dependent manner in vitro. Administration of sHSPB5-Fc protects lens epithelial cells against cisplatin- or UVB-induced cell apoptosis. It also decreases GFP-Httex1-Q74 insolubility, and reduces the size and cytotoxicity of GFP-Httex1-Q74 aggregates in PC-12 cells. CONCLUSION: This recombinant sHSPB5-Fc exhibits chaperone activity to protect cells against proteotoxicity.


Asunto(s)
Sustancias Protectoras/farmacología , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/farmacología , Animales , Apoptosis/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Citoprotección , Células Epiteliales/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Sustancias Protectoras/química , Sustancias Protectoras/metabolismo , Agregado de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Cadena B de alfa-Cristalina/química , Cadena B de alfa-Cristalina/metabolismo
3.
Biochem Biophys Rep ; 30: 101227, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35198740

RESUMEN

Genetic mutations in HSF4 cause congenital cataracts. HSF4 exhibits both positive and negative regulation on the transcription of heat shock and non-heat shock proteins during lens development, and its activity is regulated by posttranslational modifications. Biotin is an essential vitamin that regulates gene expression through protein biotinylation. In this paper, we report that HSF4b is negatively regulated by biotinylation. Administration of biotin or ectopic bacterial biotin ligase BirA increases HSF4b biotinylation at its C-terminal amino acids from 196 to 493. This attenuates the HSF4b-controlled expression of αB-crystallin in both lens epithelial cells and tested HEK293T cells. HSF4b interacts with holocarboxylase synthetase (HCS), a ubiquitous enzyme for catalyzing protein biotinylation in mammal. Ectopic HA-HCS expression downregulates HSF4b-controlled αB-crystallin expression. Lysine-mutation analyses indicate that HSF4b/K444 is a potential biotinylation site. Mutation K444R reduces the co-precipitation of HSF4b by streptavidin beads and biotin-induced reduction of αB-crystallin expression. Mutations of other lysine residues such as K207R/K209R, K225R, K288R, K294R and K355R in HSF4's C-terminal region do not affect HSF4's expression level and the interaction with streptavidin, but they exhibit distinct regulation on αB-crystallin expression through different mechanisms. HSF4/K294R leads to upregulation of αB-crystallin expression, while mutations K207R/K209R, K225R, K288R, K255R and K435R attenuate HSF4's regulation on αB-crystallin expression. K207R/K209R blocks HSF4 nuclear translocation, and K345R causes HSF4 destabilization. Taken together, the data reveal that biotin maybe a novel factor in modulating HSF4 activity through biotinylation.

4.
Colloids Surf B Biointerfaces ; 136: 1113-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26612726

RESUMEN

A range of fluorinated hydrogels were synthesized using the copolymerization of 1, 1, 1, 3, 3, 3-hexafluoroisopropyl methacrylate (HFMA) or 1H, 1H, 7H-dodecafluoroheptyl methacrylate (DFMA) with hydrophilic monomers. Bovine serum albumin (BSA) and Lysozyme (LZM) were chosen as model proteins to investigate the performance of protein adsorption on the surface of these fluorinated hydrogels. It was found that the performance of the fluorinated hydrogels toward protein adsorption was different for different proteins; simultaneously, the amount of protein adsorption was related to but not linear with the fluorine content on the hydrogel surface. With increasing HFMA content, the mass of BSA adsorption increased in the first stage and then decreased, meanwhile the mass of LZM adsorption exhibited an upward trend in general. In addition, the amount of protein adsorption was also related to the type and length of the fluorinated groups. The hydrogels made from DFMA behaved better than HFMA hydrogels in terms of reducing protein adsorption. This study might provide further reference in choosing fluorine monomer to prepare protein-repelling hydrogels.


Asunto(s)
Flúor/química , Hidrogeles , Proteínas/química , Silicio/química , Adsorción , Propiedades de Superficie
5.
J Phys Chem B ; 119(30): 9780-6, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26125331

RESUMEN

Three series of multicomponent silicone hydrogels were prepared by the copolymerization of two hydrophobic silicon monomers bis(trimethylsilyloxy) methylsilylpropyl glycerol methacrylate (SiMA) and tris(trimethylsiloxy) 3-methacryloxypropylsilane (TRIS) with three hydrophilic monomers. The surface hydrophilicity of the silicone hydrogels was characterized by contact angle measurements, and an interesting phenomenon was found that the silicone hydrogels made from less hydrophobic monomer SiMA possess more hydrophobic surfaces than those made from TRIS. The surface properties such as morphology and elemental composition of the silicone hydrogels were explored by scanning electron microscopy (SEM) imaging and energy dispersive spectrometry (EDS) analysis, and their relationships with the surface hydrophilicity were investigated in details. The results show neither the surface morphology nor the elemental composition has obvious impact on the surface hydrophilicity. Atomic force microscopy (AFM) imaging revealed that SiMA hydrogel had a more significant phase separation structure, which also made its surface uneven: a lot of tiny holes were observed on the surface. This surface phase separation structure made SiMA hydrogel more difficult to be wetted by water or PBS buffer, i.e., more hydrophobic than TRIS hydrogel. On the basis of these results, we propose that the phase separation structure as well as the nature of silicon monomers might be the fundamental reasons of surface hydrophilicity. These results could help to design a silicone hydrogel with better surface properties and wider application.


Asunto(s)
Hidrogeles/química , Interacciones Hidrofóbicas e Hidrofílicas , Siliconas/química , Metacrilatos/química , Silanos/química , Propiedades de Superficie
6.
J Phys Chem B ; 118(50): 14640-7, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25423615

RESUMEN

In this article, the multicomponent copolymers were prepared by the copolymerization of two hydrophobic silicon-containing monomers bis(trimethylsilyloxy) methylsilylpropyl glycerol methacrylate (SiMA) and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) with three hydrophilic monomers 2-hydroxyethyl methacrylate, N-vinylpyrrolidone, and N,N-dimethyl acrylamide. The copolymers were hydrated to form transparent silicone hydrogels. The oxygen permeability coefficients (Dk) of hydrogels were measured, and their relationships with the equilibrium water contents (EWC) and the types and contents of silicon containing monomers as well as the phase separation structures of silicone hydrogels were analyzed in detail. The results showed that the EWC decreased as the increase of SiMA content. The relationship between Dk and SiMA content, as well as that between Dk and EWC, showed inverted bell curve distributions, which meant two main factors, i.e., silicon-oxygen bond in silicone and water in hydrogel, contributed to oxygen permeation and followed a mutual inhibition competition mechanism. The internal morphologies of the hydrogels were observed by transmission electron microscope, and the results showed that the hydrogels presented two different phase separation structures depending on the types of the silicon-containing monomers. The silicone phase in SiMA containing hydrogel presented to be a granular texture, while the silicone phase in TRIS containing hydrogel formed a fibrous texture which resulted in a higher Dk value. These results could help to design a silicone hydrogel with better properties and wider application.


Asunto(s)
Hidrogeles/química , Oxígeno/química , Siliconas/química , Acrilamidas/química , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos , Microscopía Electrónica de Transmisión , Permeabilidad , Polimerizacion , Pirrolidinonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA