Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microb Pathog ; 111: 274-279, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28888884

RESUMEN

BACKGROUND: Escherichia coli (E. coli) is one of the most relevant opportunistic pathogenic bacteria as it may cause severe morbidity and mortality in yaks (poephagus grunniens). In recent years, several kinds of antibiotics have been widely used in Tibetan areas to treat the bacterial diseases, resulting in serious repercussions on the bacterial antibiotic resistance in yaks. This investigation was conducted in order to determine the prevalence of antimicrobial resistance and integron gene cassettes in E. coli isolated from yaks in Aba Tibetan Autonomous Prefecture (Aba TAP), China. METHODS: A total of 278 non-duplicated fresh samples were collected from the yaks in Aba TAP for the isolation and identification of E. coli isolates. Antimicrobial susceptibility testing is performed by using the disc diffusion method according to the Clinical and Laboratory Standards Institute guidelines (CLSI, 2013). Various antibiotic resistance genes and integron gene cassettes were detected by polymerase chain reaction (PCR) and sequencing. RESULTS: Overall, a total of 228 E. coli bacteria were isolated from the fresh faeces of yaks in four different geographical regions. 58% of those isolates showed multi-drug resistance capabilities (MDR) in our study. These isolated bacteria showed a high resistance rate to streptomycin (84%), cefotaxime (79%), amikacin (61%) and trimethoprim-sulfamethoxazole (54%). The most common antimicrobial resistance genes in the isolates were blaCTX-M, sul1, aph (3')-IIa, aac (3)-IIa, aac (6')-Ib, tetB, with respective detection rates of 65%, 46%, 35%, 13%, 11%, and 10%. Furthermore, 66% and 6% of the strains carried Class 1 and 2 integrons, respectively. However, the class 3 integron was not detected. Gene cassette arrays in the class 1 integron included aadA1, aadA7, aadA5, aadA17, dfrA1, dfrA5, dfrA1-aadA1, dfrA12-aadA2 and dfrA17-aadA5. The most prevalent gene cassette was aadA1 (20%). For the class 2 integron, dfrA1-sat2-aadA1 (6%) and dfrA1-sat1-aadA1 (0.4%) were also detected as part of this research. CONCLUSION: High multi-drug resistance rates have been discovered, as well as a prevalence of antibiotic resistance genes and integron gene cassettes in the E. coli isolated from the faeces of yak. This might create a potential problem for treatment of the yaks' bacterial infections as well as food hygiene for humans. It is therefore urgently necessary to begin continuous surveillance and analysis of antibiotic resistance and integron cassettes in other bacteria from yaks.


Asunto(s)
Antibacterianos/farmacología , Bovinos/microbiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Integrones/genética , Animales , China , ADN Bacteriano/genética , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Heces/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Tibet
2.
Asian-Australas J Anim Sci ; 29(11): 1593-1600, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26954191

RESUMEN

This research was conducted to investigate the physiological consequences of undernourished yak. Twelve Maiwa yak (110.3±5.85 kg) were randomly divided into two groups (baseline and starvation group). The yak of baseline group were slaughtered at day 0, while the other group of yak were kept in shed without feed but allowed free access to water, salt and free movement for 9 days. Blood samples of the starvation group were collected on day 0, 1, 2, 3, 5, 7, 9 and the starved yak were slaughtered after the final blood sample collection. The liver and muscle glycogen of the starvation group decreased (p<0.01), and the lipid content also decreased while the content of moisture and ash increased (p<0.05) both in Longissimus dorsi and liver compared with the baseline group. The plasma insulin and glucose of the starved yak decreased at first and then kept stable but at a relatively lower level during the following days (p<0.01). On the contrary, the non-esterified fatty acids was increased (p<0.01). Beyond our expectation, the ketone bodies of ß-hydroxybutyric acid and acetoacetic acid decreased with prolonged starvation (p<0.01). Furthermore, the mRNA expression of lipogenetic enzyme fatty acid synthase and lipoprotein lipase in subcutaneous adipose tissue of starved yak were down-regulated (p<0.01), whereas the mRNA expression of lipolytic enzyme carnitine palmitoyltransferase-1 and hormone sensitive lipase were up-regulated (p<0.01) after 9 days of starvation. The phosphoenolpyruvate carboxykinase and pyruvate carboxylase, responsible for hepatic gluconeogenesis were up-regulated (p<0.01). It was concluded that yak derive energy by gluconeogenesis promotion and fat storage mobilization during starvation but without ketone body accumulation in the plasma.

3.
Front Genet ; 15: 1382128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873117

RESUMEN

The Sichuan-Yunnan region is the main production area of yaks in southwestern China, with rich genetic resources of Yaks. Nevertheless, there have been limited study on the genetic characteristics of the entire yak populations in Tibet and southwestern China. In this study, we performed whole-genome resequencing to identify genetic variation information in a total of 198 individuals from six yak breeds (populations) in Sichuan (Muli yak, Jinchuan yak, Changtai yak, Maiwa yak), Yunnan (Zhongdian yak), and Tibet (Tibetan yak). The aim was to investigate the whole-genome genetic diversity, population genetic structure, and genome selection signatures. We observed that all six populations exhibit abundant genetic diversity. Except for Tibetan yaks, which showed low nucleotide diversity (0.00104), the remaining yak populations generally displayed high nucleotide diversity (0.00129-0.00153). Population genetic structure analysis revealed that, among the six yak populations, Muli yak exhibited greater differentiation from other yak populations and formed a distinct cluster independently. The Maiwa yak population displayed a complex genetic structure and exhibited gene exchange with Jinchuan and Changtai yaks. Positive selection signals were detected in candidate genes associated with growth (GNB4, HMGA2, TRPS1, and LTBP1), reproduction (PI4KB, DYNC1I1, and GRIP1), immunity (CD200 and IL1RAP), lactation (SNX13 and CPM), hypoxia adaptation (NDUFB6, PRKN, and MRPS9), hair (KRT24, KRT25, and KRT26), meat quality (SUCLG2), digestion and absorption (CLDN1), and pigment deposition (OCA2) using the integrated Pi and F ST methods. This study provides significant insights into understanding the whole-genome genetic characteristics of yak populations in Tibet and southwestern China.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38300451

RESUMEN

Cellulolytic bacteria with probiotic functions play a crucial role in promoting the intestinal health in herbivores. In this study, we aimed to correlate the 16S rRNA gene amplicon sequencing and fiber-degrading enzyme activity data from six different herbivore feces samples. By utilizing the separation and screening steps of probiotics, we targeted and screened high-efficiency fiber-degrading bacteria with probiotic functions. The animals included Maiwa Yak (MY), Holstein cow (CC), Tibetan sheep (TS), Southern Sichuan black goat (SG), Sichuan white rex rabbit (CR), and New Zealand white rabbit (ZR). The results showed that the enzymes associated with fiber degradation were higher in goat and sheep feces compared to cattle and rabbit's feces. Correlation analysis revealed that Bacillus and Fibrobacter were positively correlated with five types of fiber-degrading related enzymes. Notably, the relative abundance of Bacillus in the feces of Tibetan sheep was significantly higher than that of other five herbivores. A strain TS5 with good cellulose decomposition ability from the feces of Tibetan sheep by Congored staining, filter paper decomposition test, and enzyme activity determination was isolated. The strain was identified as Bacillus velezensis by biological characteristics, biochemical analysis, and 16S rRNA gene sequencing. To test the probiotic properties of Bacillus velezensis TS5, we evaluated its tolerance to acid and bile salt, production of digestive enzymes, antioxidants, antibacterial activity, and adhesion ability. The results showed that the strain had good tolerance to pH 2.0 and 0.3% bile salts, as well as good potential to produce cellulase, protease, amylase, and lipase. This strain also had good antioxidant capacity and the ability to antagonistic Staphylococcus aureus BJ216, Salmonella SC06, Enterotoxigenic Escherichia coli CVCC196, and Escherichia coli ATCC25922. More importantly, the strain had good self-aggregation and Caco-2 cell adhesion rate. In addition, we tested the safety of Bacillus velezensis TS5 by hemolysis test, antimicrobial susceptibility test, and acute toxicity test in mice. The results showed that the strain had no hemolytic phenotype, did not develop resistance to 19 commonly used antibiotics, had no cytotoxicity to Caco-2, and did not have acute toxic harm to mice. In summary, this study targeted isolated and screened a strain of Bacillus velezensis TS5 with high fiber-degrading ability and probiotic potency. This strain can be used as a potential probiotic for feeding microbial preparations for ruminants.

5.
Foods ; 12(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174396

RESUMEN

Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics' promotion on the growth and reproduction of probiotics. The objective of this study was to investigate the influence of Lactiplantibacillus plantarum N-1 and its synbiotic with oligomeric isomaltose on the growth performance and meat quality of Hu sheep. Hu sheep (0-3 days old) were fed with water, probiotics of N-1, or synbiotics (N-1 and oligomeric isomaltose) daily in three pens for 60 days and regularly evaluated to measure growth performance and collect serum (five lambs per group). Longissimus thoracis (LT) and biceps brachii (BB) muscle tissues were collected for the analysis of pH value, color, texture, nutrients, mineral elements, amino acids, volatile compounds, and antioxidant capacity. The results showed that dietary supplementation of N-1 tended to improve growth performance and meat quality of Hu sheep, while the synergism of N-1 with oligomeric isomaltose significantly improved their growth performance and meat quality (p < 0.05). Both the dietary supplementation of N-1 and synbiotics (p < 0.05) increased the body weight and body size of Hu sheep. Synbiotic treatment reduced serum cholesterol and improved LT fat content by increasing the transcription level of fatty acid synthase to enhance fat deposition in LT, as determined via RT-qPCR analysis. Moreover, synbiotics increased zinc content and improved LT tenderness by decreasing shear force and significantly increased the levels of certain essential (Thr, Phe, and Met) and non-essential (Asp, Ser, and Tyr) amino acids of LT (p < 0.05). Additionally, synbiotics inhibited the production of carbonyl groups and TBARS in LT and thus maintained antioxidant stability. In conclusion, it is recommended that the use of synbiotics in livestock breeding be promoted to improve sheep production and meat quality.

6.
Microbiol Spectr ; 10(4): e0115522, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35771011

RESUMEN

The gut microbiota and its metabolic activities are crucial for maintaining host homoeostasis and health, of which the role of probiotics has indeed been emphasized. The current study delves into the performance of probiotics as a beneficial managemental strategy, which further highlights their impact on growth performance, serologic investigation, gut microbiota, and metabolic profiling in yaks' calves. A field experiment was employed consisting of 2 by 3 factorial controls, including two development stages, namely, 21 and 42 days (about one and a half month), with three different feeding treatments. Results showed a positive impact of probiotic supplements on growth performance by approximately 3.16 kg (P < 0.01) compared with the blank control. Moreover, they had the potential to improve serum antioxidants and biochemical properties. We found that microorganisms that threaten health were enriched in the gut of the blank control with the depletion of beneficial bacteria, although all yaks were healthy. Additionally, the gut was colonized by a microbial succession that assembled into a more mature microbiome, driven by the probiotics strategy. The gut metabolic profiling was also changed significantly after the probiotic strategy, i.e., the concentrations of metabolites and the metabolic pattern, including enrichments in protein digestion and absorption, vitamin digestion and absorption, and biosynthesis of secondary metabolites. In summary, probiotics promoted gut microbiota/metabolites, developing precise interventions and achieving physiological benefits based on intestinal microecology. Hence, it is important to understand probiotic dietary changes to the gut microbiome, metabolome, and the host phenotype. IMPORTANCE The host microbiome is a composite of the trillion microorganisms colonizing host bodies. It can be impacted by various factors, including diet, environmental conditions, and physical activities. The yaks' calves have a pre-existing imbalance in the intestinal microbiota with an inadequate feeding strategy, resulting in poor growth performance, diarrhea, and other intestinal diseases. Hence, targeting gut microbiota might provide a new effective feeding strategy for enhancing performance and maintaining a healthy intestinal environment. Based on the current findings, milk replacer-based Lactobacillus feeding may improve growth performance and health in yaks' calves.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Animales , Bovinos , Lactobacillus/fisiología , Leche , Probióticos/farmacología
7.
3 Biotech ; 10(6): 259, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32432020

RESUMEN

The domestic yak (Bos grunniens) from the Qinghai-Tibet Plateau is an important animal model in high-altitude adaptation studies. Here, we performed the genome-wide selective sweep analysis to identify the candidate copy number variation (CNV) for the high-altitude adaptation of yaks. A total of 531 autosomal CNVs were determined from 29 yak genome-wide resequencing data (15 high- and 14 low-altitude distributions) by using a CNV caller with a CNV identification interval > 5 kb, CNV silhouette score > 0.7, and minimum allele frequency > 0.05. Most high-frequency CNVs were located at the exonic (44.63%) and intergenic (46.52%) regions. In accordance with the results of the selective sweep analysis, 7 candidate CNVs were identified from the interaction of the top 20 CNVs with highest divergence from the F ST and V ST between the low (LA) and high (HA) altitudes. Five genes (i.e., GRIK4, IFNLR1, LOC102275985, GRHL3, and LOC102275713) were also annotated from the seven candidate CNVs and their upstream and downstream ranges at 300 kb. GRIK4, IFNLR1, and LOC102275985 were enriched in five known signal pathways, namely, glutamatergic synapse, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and olfactory transduction. These pathways are involved in the environmental adaptability and various physiological functions of animals, especially the physiological regulation under a hypoxic environment. The results of this study advanced the understanding of CNV as an important genomic structure variant type that contributes to HA adaptation and helped further explain the molecular mechanisms underlying the altitude adaptability of yaks.

8.
Front Microbiol ; 11: 1250, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595625

RESUMEN

Yaks provide necessities such as meat and milk for Tibetans living at high altitudes on and around the Qinghai-Tibetan Plateau. Enterococci are ubiquitous members of the animal gut microbiota that can cause biofilm-associated opportunistic infections. Meanwhile, multidrug-resistant Enterococcus also poses a serious threat to public health. This study aims to characterize antibiotic resistance, virulence genes, and biofilm formation of enterococci from yaks. From April 2018 to July 2019, we collected 395 fecal samples of yaks in Aba Tibetan Autonomous Prefecture, China. Enterococci isolated from the samples were identified and classified according to the 16S rDNA sequence. The antibiotic resistance of each isolate was detected according to the Kirby-Bauer disk diffusion method, and antibiotic resistance genes were detected by polymerase chain reaction (PCR) and sequencing. Enterococcal biofilms were assessed using standard procedures. Different virulence genes were detected by PCR and sequencing. In total, 381 enterococci strains were recovered, with Enterococcus faecalis (41.99%) and Enterococcus faecium (37.80%) being the predominant species. Many isolates were multidrug- resistant (60.37%) and showed a high resistance rate to rifampicin (64.30%) and tetracycline (61.54%). We also detected various antimicrobial resistance (AMR) genes in the tested strains. The E. faecalis strains had higher frequency of biofilm formation and virulence genes than other enterococcal species. This is the first report that shows yaks are repositories for drug-resistant enterococci with virulent determinants and biofilms that may spread into humans and to environment. This study also provides useful data suggesting that enterococci may pose a potential health risk to yaks. Therefore, active surveillance of AMR and pathogenesis in enterococci from yaks is urgently warranted.

9.
3 Biotech ; 9(9): 336, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31475088

RESUMEN

Litter size is considered to be the most important index for estimating domestic animal productivity. The number of indigenous goats in China with higher litter sizes than those of commercial breeds in other countries may be helpful for accelerating genetic improvements in goat breeding. We performed a genome-wide selective sweep analysis of 31 Dazu black goats with extreme standard deviation in litter size within the third fetus to identify significant genomic regions and candidate genes through different analyses. The analysis identified a total of 33,917,703 variants, including 32,262,179 SNPs and 1,655,524 indels. In addition, two novel candidate genes (LRP1B and GLRB), which are related to litter size, were obtained with π, Tajima's D, πA/πB, and F ST at the individual level with a 95% threshold for each parameter. These two genes were annotated in five GO terms (localization, binding, macromolecular complex, membrane part, and membrane) and two pathways (long-term depression and neuroactive ligand-receptor interaction pathway). Regarding the result of linkage disequilibrium (LD) analysis, in LRP1B and GRID2, the high-yield Dazu black goats exhibit significantly different LD patterns from low-yield goats. Litter size variability has low heritability and is related to multiple complex factors found in domestic animals. Obtaining a clear explanation and significant signal by genome-wide selective sweep analysis with a small sample size is difficult. However, we investigated some candidate genes, particularly LRP1B and GLRB, which may provide useful information for further research.

10.
Artículo en Inglés | MEDLINE | ID: mdl-25162469

RESUMEN

The population of domestic yak, Tianzhu white yak, from Tibetan area in China is considered as a rare Bos grunniens species. We first determined and annotated its complete mitochondrial genome. The mitogenome is 16,319 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.7%, T: 27.2%, C: 25.8% and G: 13.2%. The complete mitogenome of the new subspecies of Bos grunniens could provide an important data to further explore the taxonomic status of the subspecies.


Asunto(s)
Bovinos/genética , Genoma Mitocondrial , Mitocondrias/genética , Animales , Animales Domésticos/clasificación , Animales Domésticos/genética , Composición de Base , Bovinos/clasificación , Tamaño del Genoma , Filogenia , Análisis de Secuencia de ADN/métodos , Tibet
11.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(6): 3826-3827, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-25186658

RESUMEN

The Chinese Yakow, Bos primigenius taurus × Bos grunniens, is a large and commercially important hybrid in family Bovidae. We first determined and annotated its complete mitochondrial genome. The mitogenome is 16,322 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.7%, T: 27.3%, C: 25.8% and G: 13.2%. The complete mitogenome of Yakow (B. p. taurus × B. grunniens) could provide an important data to further explore the taxonomic status of Yakow (B. p. taurus × B. grunniens) in B. grunniens and enrich the genetic information or evolutionary history of the Bovidae.


Asunto(s)
Bovinos/genética , Genoma Mitocondrial/genética , Animales , Composición de Base , Secuencia de Bases , Bovinos/clasificación , China , ADN Mitocondrial/química , ADN Mitocondrial/genética , Proteínas Mitocondriales/genética , Sistemas de Lectura Abierta/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA