RESUMEN
Here, we have investigated the synergistic growth of long wormlike micelles and their transformation into disklike micelles, which occurs in three-component solutions composed of sodium lauryl ether sulfate (SLES; anionic), cocamidopropyl betaine (CAPB; zwitterionic), and dodecanoic acid (HC12; nonionic). The solution rheology is characterized in terms of zero-shear viscosities and characteristic times for micellar breaking and reptation. Furthermore, the microstructure evolution, leading to the observed rheological behavior, is revealed by cryo-transmission electron microscopy (TEM) micrographs. In all cases, the CAPB-to-SLES ratio is fixed, whereas the fatty acid concentration is varied. At a certain HC12 concentration, the solution viscosity passes through a maximum. The cryo-TEM imaging indicates that wormlike micelles appear before the peak, grow further up to the peak, and finally transform into disklike aggregates (a very rare micellar structure) after the peak. The transformation of worms into disks leads to a drop in viscosity because the length-to-thickness aspect ratio of the disks is significantly lower than that of the worms. In this article, we elucidate the structure-rheology relations in micellar solutions that might be applied for the design of personal-care and household formulations.
RESUMEN
Particle surface roughness and chemistry play a pivotal role in the design of new particle-based materials. Although the adsorption of rough particles has been studied in the literature, desorption of such particles remains poorly understood. In this work, we specifically focus on the detachment of rough and chemically modified raspberry-like microparticles from water/oil interfaces using colloidal-probe atomic force microscopy. We observe different contact-line dynamics occurring upon particle detachment (pinning vs sliding), depending on both the particle roughness and surface modification. In general, surface roughness leads to a reduction of the desorption force of hydrophobic particles into the oil and provides a multitude of pinning points that can be accessed by applying different loads. Our results hence suggest future strategies for stabilization and destabilization of Pickering emulsions and foams.
RESUMEN
The synergistic growth of giant wormlike micelles in ternary mixed solutions composed of an anionic surfactant (sodium laurylethersulfate, SLES), a zwitterionic surfactant (cocamidopropyl betaine, CAPB), and octanoic acid (HC8) is studied. Rheological data and their analysis in terms of Cole-Cole plots and micellar characteristic times are presented, and the micellar structures behind the observed rheological behavior are revealed by cryo-TEM micrographs. The surfactant composition is fixed near the maximal micelle size of the binary SLES + CAPB system, whereas the concentration of HC8 is varied. At a given HC8 concentration, the viscosity of the ternary micellar solutions exhibits a very high and sharp peak. Polarized-light optical microscopy indicates that all investigated solutions are isotropic rather than liquid-crystalline. The cryo-TEM imaging shows complex phase behavior: wormlike micelles to the left of the peak, giant entangled wormlike micelles at the peak, and long wormlike micelles coexisting with multiconnected micellar aggregates to the right of the peak. The formation of multiconnected micelles leads to a drop in viscosity at the higher concentrations. The results contribute to a better understanding of the structure-rheology relations in micellar surfactant solutions and could be useful for controlling the properties of formulations in personal-care and house-hold detergency.
RESUMEN
Microparticle adsorption and self-assembly at fluid interfaces are strongly affected by the particle three-phase contact angle θ. On the single-particle level, θ can be determined by several techniques, including colloidal-probe AFM, the gel-trapping technique (GTT) and the freeze-fracture shadow-casting (FreSCa) method. While GTT and FreSCa provide contact angle distributions measured over many particles, colloidal-probe AFM measures the wettability of an individual (specified) particle attached onto an AFM cantilever. In this paper, we extract θ for smooth microparticles through the analysis of force-distance curves upon particle approach and retraction from the fluid interface. From each retraction curve, we determine: (i) the maximal force, Fmax; (ii) the detachment distance, Dmax; and (iii) the work for quasistatic detachment, W. To relate Fmax, Dmax and W to θ, we developed a detailed theoretical model based on the capillary theory of flotation. The model was validated in three different ways. First, the contact angles, evaluated from Fmax, Dmax and W, are all close in value and were used to calculate the entire force-distance curves upon particle retraction without any adjustable parameters. Second, the model was successfully applied to predict the experimental force-distance curve of a truncated sphere, whose cut is positioned below the point of particle detachment from the interface. Third, our theory was confirmed by the excellent agreement between the particle contact angles obtained from the colloidal-probe AFM data and the ensemble-average contact angles measured by both GTT and FreSCa. Additionally, we devised a very accurate closed-form expression for W (representing the energy barrier for particle detachment), thus extending previous results in the literature.
RESUMEN
Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.
RESUMEN
Here, we present a detailed theoretical model describing the growth of disclike surfactant micelles. The model is tested against light-scattering data for micellar solutions from mixed conventional surfactants and from fluorinated surfactants. Theoretical expressions are derived for the concentration dependencies of the number and mass average aggregation numbers. Central role in the theory is played by the difference between the chemical potentials of a surfactant molecule in cylindrical and discoidal micelles. This difference, scaled with the thermal energy kT, is denoted p. For p<0, the formation of cylindrical (rather than disclike) micelles is energetically favored. For p>0 disclike micelles are formed, but their growth is limited due to the rise of their positive peripheral energy. Because of that, disclike micelles can be observed in a relatively narrow interval, 0
Asunto(s)
Modelos Estadísticos , Tensoactivos/química , Halogenación , Hidrodinámica , Luz , Micelas , Dispersión de Radiación , Soluciones , Termodinámica , ViscosidadRESUMEN
The stepwise thinning (stratification) of liquid films, which contain micelles of an ionic surfactant, depends on the micelle aggregation number, N(agg), and charge, Z. Vice versa, from the height of the step and the final film thickness one can determine N(agg), Z, and the degree of micelle ionization. The determination of N(agg) is based on the experimental fact that the step height is equal to the inverse cubic root of the micelle concentration. In addition, Z is determined from the final thickness of the film, which depends on the concentration of counterions dissociated from the micelles in the bulk. The method is applied to micellar solutions of six surfactants, both anionic and cationic: sodium dodecylsulfate (SDS), cetyl trimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC), sodium laurylethersulfates with 1 and 3 ethylene oxide groups (SLES-1EO and SLES-3EO), and potassium myristate. The method has the following advantages: (i) N(agg) and Z are determined simultaneously, from the same set of experimental data; (ii) N(agg) and Z are determined for each given surfactant concentration (i.e. their concentration dependence is obtained), and (iii) N(agg) and Z can be determined even for turbid solutions, like those of carboxylates, where the micelles coexist with acid-soap crystallites, so that the application of other methods is difficult. The results indicate that the micelles of greater aggregation number have a lower degree of ionization, which can be explained with the effect of counterion binding. The proposed method is applicable to the concentration range, in which the films stratify and the micelles are spherical. This is satisfied for numerous systems representing scientific and practical interest.