Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 58(9): 1188-1197, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714720

RESUMEN

Enolase is a glycolytic metalloenzyme involved in carbon metabolism. The advantage of targeting enolase lies in its essentiality in many biological processes such as cell wall formation and RNA turnover and as a plasminogen receptor. We initially used a DARTS assay to identify enolase as a target in Escherichia coli. The antibacterial activities of α-, ß-, and γ-substituted seven-member ring tropolones were first evaluated against four strains representing a range of Gram-negative bacteria. We observed that the chemical properties and position of the substituents on the tropolone ring play an important role in the biological activity of the investigated compounds. Both α- and ß-substituted phenyl derivatives of tropolone were the most active with minimum inhibitory concentrations in the range of 11-14 µg/mL. The potential inhibitory activity of the synthetic tropolones was further evaluated using an enolase inhibition assay, X-ray crystallography, and molecular docking simulations. The catalytic activity of enolase was effectively inhibited by both the naturally occurring ß-thujaplicin and the α- and ß-substituted phenyl derivatives of tropolones with IC50 values in range of 8-11 µM. Ligand binding parameters were assessed by isothermal titration calorimetry and differential scanning calorimetry techniques and agreed with the in vitro data. Our studies validate the antibacterial potential of tropolones with careful consideration of the position and character of chelating moieties for stronger interaction with metal ions and residues in the enolase active site.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Tropolona/farmacología , Antibacterianos/química , Calorimetría , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Tropolona/química
2.
Proc Natl Acad Sci U S A ; 112(3): 749-54, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25552560

RESUMEN

Methods to accurately predict potential drug target mutations in response to early-stage leads could drive the design of more resilient first generation drug candidates. In this study, a structure-based protein design algorithm (K* in the OSPREY suite) was used to prospectively identify single-nucleotide polymorphisms that confer resistance to an experimental inhibitor effective against dihydrofolate reductase (DHFR) from Staphylococcus aureus. Four of the top-ranked mutations in DHFR were found to be catalytically competent and resistant to the inhibitor. Selection of resistant bacteria in vitro reveals that two of the predicted mutations arise in the background of a compensatory mutation. Using enzyme kinetics, microbiology, and crystal structures of the complexes, we determined the fitness of the mutant enzymes and strains, the structural basis of resistance, and the compensatory relationship of the mutations. To our knowledge, this work illustrates the first application of protein design algorithms to prospectively predict viable resistance mutations that arise in bacteria under antibiotic pressure.


Asunto(s)
Algoritmos , Antagonistas del Ácido Fólico/farmacología , Proteínas/química , Resistencia a Medicamentos/genética , Polimorfismo de Nucleótido Simple , Staphylococcus aureus/enzimología , Tetrahidrofolato Deshidrogenasa/efectos de los fármacos
3.
Pharmacol Res ; 113(Pt A): 438-448, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663262

RESUMEN

Tropolones, such as ß-thujaplicin, are small lead-like natural products that possess a variety of biological activities. While the ß-substituted natural products and their synthetic analogs are potent inhibitors of human cancer cell growth, less is known about their α-substituted counterparts. Recently, we synthesized a series of α-substituted tropolones including 2-hydroxy-7-(naphthalen-2-yl)cyclohepta-2,4,6-trien-1-one (α-naphthyl tropolone). Here, we evaluate the antiproliferative mechanisms of α-naphthyl tropolone and the related α-benzodioxinyl analog. The α-substituted tropolones inhibit growth of lymphocytic leukemia cells, but not healthy blood cells, with nanomolar potency. Treatment of leukemia cell lines with the tropolone dose-dependently induces apoptosis as judged by staining with annexin V and propidium iodide and Western blot analysis of cleaved caspase 3 and 7. Moreover, pre-treatment of cells with the caspase inhibitor Z-VAD-FMK inhibited the apoptotic effects of the tropolone in two lymphocytic lines. Caspase inhibition also blocked elevated histone acetylation caused by the tropolone, indicating that its effects on histone acetylation are potentiated by caspases. In contrast, α-naphthyl tropolone upregulated p53 expression and phosphorylation of Akt and mTOR in a manner that was not rescued by caspase inhibition. The effects of tropolone were blocked by co-incubation with high levels of free extracellular iron but not by pre-loading with iron. Additionally, dose and time dependent reduction in ex vivo viability of cells from leukemia patients was observed. Taken together, we demonstrate that α-substituted tropolones upregulate DNA damage repair pathways leading to caspase-dependent apoptosis in malignant lymphocytes.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Leucemia/tratamiento farmacológico , Tropolona/farmacología , Acetilación/efectos de los fármacos , Clorometilcetonas de Aminoácidos/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Histonas/metabolismo , Humanos , Leucemia/metabolismo , Leucocitos Mononucleares , Monoterpenos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tropolona/análogos & derivados , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
Biochemistry ; 54(17): 2719-26, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25871808

RESUMEN

We report the first Raman spectroscopic study of propargyl-linked dihydrofolate reductase (DHFR) inhibitors being taken up by wild type Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus cells. A novel protocol is developed where cells are exposed to the fermentation medium containing a known amount of an inhibitor. At a chosen time point, the cells are centrifuged and washed to remove the extracellular compound, then frozen and freeze-dried. Raman difference spectra of the freeze-dried cells (cells exposed to the drug minus cells alone) provide spectra of the compounds inside the cells, where peak intensities allow us to quantify the number of inhibitors within each cell. A time course for the propargyl-linked DHFR inhibitor UCP 1038 soaking into E. coli cells showed that penetration occurs very quickly and reaches a plateau after 10 min exposure to the inhibitor. After 10 min drug exposure, the populations of two inhibitors, UCP 1038 and UCP 1089, were ~1.5 × 10(6) molecules in each E. coli cell, ~4.7 × 10(5) molecules in each K. pneumonia cell, and ~2.7 × 10(6) in each S. aureus cell. This is the first in situ comparison of inhibitor population in Gram-negative and Gram-positive bacterial cells. The positions of the Raman peaks also reveal the protonation of diaminopyrimidine ring upon binding to DHFR inside cells. The spectroscopic signature of protonation was characterized by binding an inhibitor to a single crystal of DHFR.


Asunto(s)
Escherichia coli/metabolismo , Antagonistas del Ácido Fólico/farmacocinética , Klebsiella pneumoniae/metabolismo , Microscopía/métodos , Espectrometría Raman/métodos , Staphylococcus aureus/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Cristalografía por Rayos X , Tetrahidrofolato Deshidrogenasa/química
5.
J Am Chem Soc ; 137(28): 8983-90, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26098608

RESUMEN

While antifolates such as Bactrim (trimethoprim-sulfamethoxazole; TMP-SMX) continue to play an important role in treating community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), resistance-conferring mutations, specifically F98Y of dihydrofolate reductase (DHFR), have arisen and compromise continued use. In an attempt to extend the lifetime of this important class, we have developed a class of propargyl-linked antifolates (PLAs) that exhibit potent inhibition of the enzyme and bacterial strains. Probing the role of the configuration at the single propargylic stereocenter in these inhibitors required us to develop a new approach to nonracemic 3-aryl-1-butyne building blocks by the pairwise use of asymmetric conjugate addition and aldehyde dehydration protocols. Using this new route, a series of nonracemic PLA inhibitors was prepared and shown to possess potent enzyme inhibition (IC50 values <50 nM), antibacterial effects (several with MIC values <1 µg/mL) and to form stable ternary complexes with both wild-type and resistant mutants. Unexpectedly, crystal structures of a pair of individual enantiomers in the wild-type DHFR revealed that the single change in configuration of the stereocenter drove the selection of an alternative NADPH cofactor, with the minor α-anomer appearing with R-27. Remarkably, this cofactor switching becomes much more prevalent when the F98Y mutation is present. The observation of cofactor site plasticity leads to a postulate for the structural basis of TMP resistance in DHFR and also suggests design strategies that can be used to target these resistant enzymes.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Tetrahidrofolato Deshidrogenasa/metabolismo , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Modelos Moleculares , Mutación Puntual , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Estereoisomerismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética
6.
Antimicrob Agents Chemother ; 58(12): 7484-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25288083

RESUMEN

Resistance to the antibacterial antifolate trimethoprim (TMP) is increasing in members of the family Enterobacteriaceae, driving the design of next-generation antifolates effective against these Gram-negative pathogens. The propargyl-linked antifolates are potent inhibitors of dihydrofolate reductases (DHFR) from several TMP-sensitive and -resistant species, including Klebsiella pneumoniae. Recently, we have determined that these antifolates inhibit the growth of strains of K. pneumoniae, some with MIC values of 1 µg/ml. In order to further the design of potent and selective antifolates against members of the Enterobacteriaceae, we determined the first crystal structures of K. pneumoniae DHFR bound to two of the propargyl-linked antifolates. These structures highlight that interactions with Leu 28, Ile 50, Ile 94, and Leu 54 are necessary for potency; comparison with structures of human DHFR bound to the same inhibitors reveal differences in residues (N64E, P61G, F31L, and V115I) and loop conformations (residues 49 to 53) that may be exploited for selectivity.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Antagonistas del Ácido Fólico/química , Klebsiella pneumoniae/química , Tetrahidrofolato Deshidrogenasa/química , Trimetoprim/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Klebsiella pneumoniae/enzimología , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/genética , Resistencia al Trimetoprim/genética
7.
Bioorg Med Chem ; 22(7): 2188-93, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613456

RESUMEN

Thujaplicins are tropolone-derived natural products with antiproliferative properties. We recently reported that certain tropolones potently and selectively target histone deacetylases (HDAC) and inhibit the growth of hematological cell lines. Here, we investigated the mechanisms by which these compounds exert their antiproliferative activity in comparison with the pan-selective HDAC inhibitor, vorinostat, using Jurkat T-cell leukemia cells. The tropolones appear to work through a mechanism distinct from vorinostat. These studies suggest that tropolone derivatives may serve as selective epigenetic modulators of hematological cells with potential applications as anti-leukemic or anti-inflammatory agents.


Asunto(s)
Antineoplásicos/farmacología , Leucemia de Células T/tratamiento farmacológico , Tropolona/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células Jurkat , Leucemia de Células T/patología , Estructura Molecular , Relación Estructura-Actividad , Tropolona/síntesis química , Tropolona/química , Células Tumorales Cultivadas
8.
Biochemistry ; 52(41): 7318-26, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24053334

RESUMEN

The pursuit of antimicrobial drugs that target dihydrofolate reductase (DHFR) exploits differences in sequence and dynamics between the pathogenic and human enzymes. Here, we present five crystal structures of human DHFR bound to a new class of antimicrobial agents, the propargyl-linked antifolates (PLAs), with a range of potency (IC50 values of 0.045-1.07 µM) for human DHFR. These structures reveal that interactions between the ligands and Asn 64, Phe 31, and Phe 34 are important for increased affinity for human DHFR and that loop residues 58-64 undergo ligand-induced conformational changes. The utility of these structural studies was demonstrated through the design of three new ligands that reduce the number of contacts with Asn 64, Phe 31, and Phe 34. Synthesis and evaluation show that one of the designed inhibitors exhibits the lowest affinity for human DHFR of any of the PLAs (2.64 µM). Comparisons of structures of human and Staphylococcus aureus DHFR bound to the same PLA reveal a conformational change in the ligand that enhances interactions with residues Phe 92 (Val 115 in huDHFR) and Ile 50 (Ile 60 in huDHFR) in S. aureus DHFR, yielding selectivity. Likewise, comparisons of human and Candida glabrata DHFR bound to the same ligand show that hydrophobic interactions with residues Ile 121 and Phe 66 (Val 115 and Asn 64 in human DHFR) yield selective inhibitors. The identification of residue substitutions that are important for selectivity and the observation of active site flexibility will help guide antimicrobial antifolate development for the inhibition of pathogenic species.


Asunto(s)
Antagonistas del Ácido Fólico/química , Tetrahidrofolato Deshidrogenasa/química , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/metabolismo , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
9.
Bioorg Med Chem Lett ; 23(5): 1279-84, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23375226

RESUMEN

A novel strategy for targeting the pathogenic organisms Candida albicans and Candida glabrata focuses on the development of potent and selective antifolates effective against dihydrofolate reductase. Crystal structure analysis suggested that an essential loop at the active site (Thr 58-Phe 66) differs from the analogous residues in the human enzyme, potentially providing a mechanism for achieving selectivity. In order to probe the role of this loop, we employed chemical synthesis, crystal structure determination and molecular dynamics simulations. The results of these analyses show that the loop residues undergo ligand-induced conformational changes that are similar among the fungal and human species.


Asunto(s)
Candida/enzimología , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Relación Estructura-Actividad
10.
Proc Natl Acad Sci U S A ; 107(31): 13707-12, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643959

RESUMEN

Drug resistance resulting from mutations to the target is an unfortunate common phenomenon that limits the lifetime of many of the most successful drugs. In contrast to the investigation of mutations after clinical exposure, it would be powerful to be able to incorporate strategies early in the development process to predict and overcome the effects of possible resistance mutations. Here we present a unique prospective application of an ensemble-based protein design algorithm, K*, to predict potential resistance mutations in dihydrofolate reductase from Staphylococcus aureus using positive design to maintain catalytic function and negative design to interfere with binding of a lead inhibitor. Enzyme inhibition assays show that three of the four highly-ranked predicted mutants are active yet display lower affinity (18-, 9-, and 13-fold) for the inhibitor. A crystal structure of the top-ranked mutant enzyme validates the predicted conformations of the mutated residues and the structural basis of the loss of potency. The use of protein design algorithms to predict resistance mutations could be incorporated in a lead design strategy against any target that is susceptible to mutational resistance.


Asunto(s)
Algoritmos , Farmacorresistencia Bacteriana , Antagonistas del Ácido Fólico/química , Mutación , Staphylococcus aureus/enzimología , Tetrahidrofolato Deshidrogenasa/química , Biocatálisis , Biometría , Cristalografía por Rayos X , Antagonistas del Ácido Fólico/farmacología , Modelos Moleculares , Estructura Terciaria de Proteína , Staphylococcus aureus/genética , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
11.
Antimicrob Agents Chemother ; 56(7): 3556-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22491688

RESUMEN

Resistance to trimethoprim (TMP) resulting from point mutations in the enzyme drug target dihydrofolate reductase (DHFR) drives the development of new antifolate inhibitors effective against methicillin-resistant Staphylococcus aureus (MRSA). For the past several years we have used structure-based design to create propargyl-linked antifolates that are highly potent antibacterial agents. In order to focus priority on the development of lead compounds with a low propensity to induce resistance, we prospectively evaluated resistance profiles for two of these inhibitors in an MRSA strain. By selection with the lead inhibitors, we generated resistant strains that contain single point mutations F98Y and H30N associated with TMP resistance and one novel mutation, F98I, in DHFR. Encouragingly, the pyridyl propargyl-linked inhibitor selects mutants at low frequency (6.85 × 10(-10) to 1.65 × 10(-9)) and maintains a low MIC (2.5 µg/ml) and a low mutant prevention concentration (1.25 µg/ml), strongly supporting its position as a lead compound. Results from this prospective screening method inform the continued design of antifolates effective against mutations at the Phe 98 position. Furthermore, the method can be used broadly to incorporate ideas for overcoming resistance early in the development process.


Asunto(s)
Antibacterianos/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Antagonistas del Ácido Fólico/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Trimetoprim/farmacología , Resistencia al Trimetoprim/genética
12.
Drug Metab Dispos ; 40(10): 2002-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22815313

RESUMEN

Propargyl-linked antifolates that target dihydrofolate reductase are potent inhibitors of several species of pathogenic bacteria and fungi. This novel class of antifolates possesses a relatively uncommon acetylenic linker designed to span a narrow passage in the enzyme active site and join two larger functional domains. Because the use of alkyne functionality in drug molecules is limited, it was important to evaluate some key physicochemical properties of these molecules and specifically to assess the overall stability of the acetylene. Herein, we report studies on four compounds from our lead series that vary specifically in the environment of the alkyne. We show that the compounds are soluble, chemically stable in water, as well as simulated gastric and intestinal fluids with half-lives of approximately 30 min after incubation with mouse liver microsomes. Their primary in vitro route of metabolism involves oxidative transformations of pendant functionality with little direct alteration of the alkyne. Identification of several major metabolites indicated the formation of N-oxides; the rate of formation of these oxides was highly influenced by branching substitutions around the propargyl linker. On the basis of the lessons of these metabolic studies, a more advanced inhibitor was designed, synthesized, and shown to have increased (t(1/2) = 65 min) metabolic stability while maintaining potent enzyme inhibition.


Asunto(s)
Alquinos/metabolismo , Diseño de Fármacos , Antagonistas del Ácido Fólico/metabolismo , Microsomas Hepáticos/metabolismo , Alquinos/química , Alquinos/farmacología , Animales , Biotransformación , Estabilidad de Medicamentos , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Semivida , Cinética , Ratones , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Solubilidad , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo
13.
Bioorg Med Chem Lett ; 22(22): 6919-22, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23040731

RESUMEN

Naturally occurring furanosteroids such as viridin and wortmannin have long been known as potent inhibitors of the lipid kinase PI-3K. We have been interested in directly accessing analogs of these complex natural products from abundant steroid feedstock materials. In this communication, we describe the synthesis of viridin/wortmannin hybrid molecules from readily available building blocks that function as PI-3K inhibitors and maintain their electrophilic properties. The compounds also show anti-proliferative effects against a breast cancer line.


Asunto(s)
Androstenos/química , Bacteriocinas/química , Inhibidores de Proteínas Quinasas/química , Esteroides/química , Androstadienos/química , Androstenos/síntesis química , Androstenos/toxicidad , Bacteriocinas/síntesis química , Bacteriocinas/toxicidad , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Femenino , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/toxicidad , Estructura Terciaria de Proteína , Wortmanina
14.
Proc Natl Acad Sci U S A ; 106(10): 3764-9, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19228942

RESUMEN

We report a computational, structure-based redesign of the phenylalanine adenylation domain of the nonribosomal peptide synthetase enzyme gramicidin S synthetase A (GrsA-PheA) for a set of noncognate substrates for which the wild-type enzyme has little or virtually no specificity. Experimental validation of a set of top-ranked computationally predicted enzyme mutants shows significant improvement in the specificity for the target substrates. We further present enhancements to the methodology for computational enzyme redesign that are experimentally shown to result in significant additional improvements in the target substrate specificity. The mutant with the highest activity for a noncognate substrate exhibits 1/6 of the wild-type enzyme/wild-type substrate activity, further confirming the feasibility of our computational approach. Our results suggest that structure-based protein design can identify active mutants different from those selected by evolution.


Asunto(s)
Isomerasas de Aminoácido/química , Bacillus/enzimología , Biología Computacional , Algoritmos , Arginina/metabolismo , Cinética , Leucina/metabolismo , Proteínas Mutantes/química , Estructura Secundaria de Proteína , Especificidad por Sustrato
15.
J Struct Biol ; 170(1): 93-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20026215

RESUMEN

Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.


Asunto(s)
Resistencia a la Meticilina/genética , Modelos Moleculares , Staphylococcus aureus/enzimología , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Resistencia al Trimetoprim/genética , Clonación Molecular , Cristalización , Antagonistas del Ácido Fólico/farmacología , Resistencia a la Meticilina/fisiología , Estructura Molecular , Mutación Missense/genética , Staphylococcus aureus/fisiología , Tetrahidrofolato Deshidrogenasa/genética , Trimetoprim/farmacología , Resistencia al Trimetoprim/fisiología
16.
Eukaryot Cell ; 8(4): 483-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19168759

RESUMEN

Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.


Asunto(s)
Antagonistas del Ácido Fólico/farmacología , Proteínas Fúngicas/química , Infecciones Oportunistas/tratamiento farmacológico , Proteínas Protozoarias/química , Tetrahidrofolato Deshidrogenasa/química , Trimetoprim/farmacología , Secuencia de Aminoácidos , Animales , Candida glabrata/química , Candida glabrata/enzimología , Diseño de Fármacos , Antagonistas del Ácido Fólico/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Humanos , Datos de Secuencia Molecular , Infecciones Oportunistas/microbiología , Infecciones Oportunistas/parasitología , Pneumocystis/química , Pneumocystis/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Toxoplasma/química , Toxoplasma/enzimología , Trimetoprim/química
17.
Biochemistry ; 48(19): 4100-8, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19323450

RESUMEN

There is a significant need for new therapeutics to treat infections caused by the biodefense agent Bacillus anthracis. In pursuit of drug discovery against this organism, we have developed novel propargyl-linked inhibitors that target the essential enzyme dihydrofolate reductase (DHFR) from B. anthracis. Previously, we reported an initial series of these inhibitors and a high-resolution crystal structure of the ternary complex of the enzyme bound to its cofactor and one of the most potent inhibitors, UCP120B [Beierlein, J., Frey, K., Bolstad, D., Pelphrey, P., Joska, T., Smith, A., Priestley, N., Wright, D., and Anderson, A. (2008) J. Med. Chem. 51, 7532-7540]. Herein, we describe a three-dimensional solution structure of the ternary complex as determined by NMR. A comparison of this solution structure to the crystal structure reveals a general conservation of the DHFR fold and cofactor interactions as well as differences in the location of an active site helix and specific ligand interactions. In addition to data for the fully assigned ternary complex, data for the binary (enzyme-cofactor) complex were collected, providing chemical shift comparisons and revealing perturbations in residues that accommodate ligand binding. Dynamics of the protein, measured using (15)N T(1) and T(2) relaxation times and {(1)H}-(15)N heteronuclear NOEs, reveal residue flexibility at the active site that explains enzyme inhibition and structure-activity relationships for two different series of these propargyl-linked inhibitors. The information obtained from the solution structure regarding active site flexibility will be especially valuable in the design of inhibitors with increased potency.


Asunto(s)
Bacillus anthracis/enzimología , Inhibidores Enzimáticos/química , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Concentración 50 Inhibidora , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , NADP/química , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/aislamiento & purificación
18.
Proteins ; 75(1): 62-74, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18781587

RESUMEN

Representing receptors as ensembles of protein conformations during docking is a powerful method to approximate protein flexibility and increase the accuracy of the resulting ranked list of compounds. Unfortunately, docking compounds against a large number of ensemble members can increase computational cost and time investment. In this article, we present an efficient method to evaluate and select the most contributive ensemble members prior to docking for targets with a conserved core of residues that bind a ligand moiety. We observed that ensemble members that preserve the geometry of the active site core are most likely to place ligands in the active site with a conserved orientation, generally rank ligands correctly and increase interactions with the receptor. A relative distance approach is used to quantify the preservation of the three-dimensional interatomic distances of the conserved ligand-binding atoms and prune large ensembles quickly. In this study, we investigate dihydrofolate reductase as an example of a protein with a conserved core; however, this method for accurately selecting relevant ensemble members a priori can be applied to any system with a conserved ligand-binding core, including HIV-1 protease, kinases, and acetylcholinesterase. Representing a drug target as a pruned ensemble during in silico screening should increase the accuracy and efficiency of high-throughput analyses of lead analogs.


Asunto(s)
Biología Computacional/métodos , Ligandos , Tetrahidrofolato Deshidrogenasa/química , Secuencia de Aminoácidos , Análisis por Conglomerados , Simulación por Computador , Secuencia Conservada , Descubrimiento de Drogas/métodos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Tetrahidrofolato Deshidrogenasa/metabolismo
19.
Chem Biol ; 15(9): 990-6, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18804036

RESUMEN

Candida glabrata is a lethal fungal pathogen resistant to many antifungal agents and has emerged as a critical target for drug discovery. Over the past several years, we have been developing a class of propargyl-linked antifolates as antimicrobials and hypothesized that these compounds could be effective inhibitors of dihydrofolate reductase (DHFR) from C. glabrata. We initially screened a small collection of these inhibitors and found modest levels of potency. Subsequently, we determined the crystal structure of C. glabrata DHFR bound to a representative inhibitor with data to 1.6 A resolution. Using this structure, we designed and synthesized second-generation inhibitors. These inhibitors bind the C. glabrata DHFR enzyme with subnanomolar potency, display greater than 2000-fold levels of selectivity over the human enzyme, and inhibit the growth of C. glabrata at levels observed with clinically employed therapeutics.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/enzimología , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Tetrahidrofolato Deshidrogenasa/metabolismo , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Alineación de Secuencia , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/química
20.
Org Biomol Chem ; 7(5): 840-50, 2009 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-19225663

RESUMEN

Phosphoinositide-3-kinase is a pivotal protein involved in a wide variety of signaling cascades and there has been a great deal of interest in the development of potent and selective inhibitors of this enzyme. In this review, the potency and selectivity of the known inhibitors is presented along with key structural information that helps rationalize the observed trends.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Sitios de Unión , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA