Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Inhal Toxicol ; 32(2): 86-95, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32216500

RESUMEN

Background: While the role of lysosomal membrane permeabilization (LMP) in NP-induced inflammatory responses has been recognized, the underlying mechanism of LMP is still unclear. The assumption has been that zinc oxide (ZnO)-induced LMP is due to Zn2+; however, little is known about the role of ZnO nanoparticles (NP) in toxicity.Methods: We examined the contribution of intact ZnO NP on membrane permeability using red blood cells (RBC) and undifferentiated THP-1 cells as models of particle-membrane interactions to simulate ZnO NP-lysosomal membrane interaction. The integrity of plasma membranes was evaluated by transmission electron microscopy (TEM) and confocal microscopy. ZnO NP dissolution was determined using ZnAF-2F, Zn2+ specific probe. The stability of ZnO NP inside the phagolysosomes of phagocytic cells, differentiated THP-1, alveolar macrophages, and bone marrow-derived macrophages, was determined.Results: ZnO NP caused significant hemolysis and cytotoxicity under conditions of negligible dissolution. Fully ionized Zn2SO4 caused slight hemolysis, while partially ionized ZnO induced significant hemolysis. Confocal microscopy and TEM images did not reveal membrane disruption in RBC and THP-1 cells, respectively. ZnO NP remained intact inside the phagolysosomes after a 4 h incubation with phagocytic cells.Conclusions: These studies demonstrate the ability of intact ZnO NP to induce membrane permeability and cytotoxicity without the contribution of dissolved Zn2+, suggesting that ZnO NP toxicity does not necessarily depend upon Zn2+. The stability of ZnO NP inside the phagolysosomes suggests that LMP is the result of the toxic effect of intact ZnO NP on phagolysosomal membranes.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Nanopartículas/toxicidad , Óxido de Zinc/toxicidad , Animales , Eritrocitos/efectos de los fármacos , Femenino , Hemólisis/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Nanopartículas/química , Solubilidad , Células THP-1 , Óxido de Zinc/química
2.
J Fluoresc ; 29(2): 347-352, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30937610

RESUMEN

The fluorescence probes di-4-ANEPPDHQ and F2N12S have solvochromatic emission spectra and fluorescence lifetimes that are sensitive to order within the environment of lipid membranes. We show in this communication that the time-resolved fluorescence anisotropy of these probes, analyzed either by the wobble-in-a-cone model or by the model-independent order parameter S2, provides complementary information about dynamics and lipid packing in a variety of homogeneous lipid membranes systems.

3.
Toxicol Pathol ; 44(5): 673-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27025955

RESUMEN

Silver nanoparticle (Ag NP) production methods are being developed and refined to produce more uniform Ag NPs through chemical reactions involving silver salt solutions, solvents, and capping agents to control particle formation. These chemical reactants are often present as contaminants and/or coatings on the Ag NPs, which could alter their interactions in vivo. To determine pulmonary effects of citrate-coated Ag NPs, Sprague-Dawley rats were exposed once nose-only to aerosolized Ag NPs (20 nm [C20] or 110 nm [C110] Ag NPs) for 6 hr. Bronchoalveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, 21, and 56 days postexposure for analyses. Inhalation of Ag NPs, versus citrate buffer control, produced significant inflammatory and cytotoxic responses that were measured in BALF cells and supernatant. At day 7, total cells, protein, and lactate dehydrogenase were significantly elevated in BALF, and peak histopathology was noted after C20 or C110 exposure versus control. At day 21, BALF polymorphonuclear cells and tissue inflammation were significantly greater after C20 versus C110 exposure. By day 56, inflammation was resolved in Ag NP-exposed animals. Overall, results suggest delayed, short-lived inflammatory and cytotoxic effects following C20 or C110 inhalation and potential for greater responses following C20 exposure.


Asunto(s)
Pulmón/patología , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar , Pulmón/efectos de los fármacos , Masculino , Nanopartículas del Metal/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Plata/administración & dosificación
4.
J Phys Chem A ; 119(2): 281-9, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25517690

RESUMEN

Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.


Asunto(s)
Pulmón/química , Nanopartículas del Metal/química , Compuestos de Plata/química , Animales , Exposición por Inhalación , Masculino , Tamaño de la Partícula , Ratas Sprague-Dawley , Dióxido de Silicio/química , Factores de Tiempo , Espectroscopía de Absorción de Rayos X
5.
Part Fibre Toxicol ; 11: 52, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25292367

RESUMEN

BACKGROUND: Silver nanowires (Ag NWs) are increasingly being used to produce touchscreens for smart phones and computers. When applied in a thin film over a plastic substrate, Ag NWs create a transparent, highly-conductive network of fibers enabling the touch interface between consumers and their electronics. Large-scale application methods utilize techniques whereby Ag NW suspensions are deposited onto substrates via droplets. Aerosolized droplets increase risk of occupational Ag NW exposure. Currently, there are few published studies on Ag NW exposure-related health effects. Concerns have risen about the potential for greater toxicity from exposure to high-aspect ratio nanomaterials compared to their non-fibrous counterparts. This study examines whether Ag NWs of varying lengths affect biological responses and silver distribution within the lungs at different time-points. METHODS: Two different sizes of Ag NWs (2 µm [S-Ag NWs] and 20 µm [L-Ag NWs]) were tested. Male, Sprague-Dawley rats were intratracheally instilled with Ag NWs (0, 0.1, 0.5, or 1.0 mg/kg). Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post exposure for analysis of BAL total cells, cell differentials, and total protein as well as tissue pathology and silver distribution. RESULTS AND CONCLUSIONS: The two highest doses produced significant increases in BAL endpoints. At Day 1, Ag NWs increased total cells, inflammatory polymorphonuclear cells (PMNs), and total protein. PMNs persisted for both Ag NW types at Day 7, though not significantly so, and by Day 21, PMNs appeared in line with sham control values. Striking histopathological features associated with Ag NWs included 1) a strong influx of eosinophils at Days 1 and 7; and 2) formation of Langhans and foreign body giant cells at Days 7 and 21. Epithelial sloughing in the terminal bronchioles (TB) and cellular exudate in alveolar regions were also common. By Day 21, Ag NWs were primarily enclosed in granulomas or surrounded by numerous macrophages in the TB-alveolar duct junction. These findings suggest short and long Ag NWs produce pulmonary toxicity; thus, further research into exposure-related health effects and possible exposure scenarios are necessary to ensure human safety as Ag NW demand increases.


Asunto(s)
Pulmón/efectos de los fármacos , Nanocables/efectos adversos , Neumonía/inducido químicamente , Plata/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Relación Dosis-Respuesta a Droga , Exposición por Inhalación/efectos adversos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Masculino , Nanocables/administración & dosificación , Tamaño de la Partícula , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología , Ratas Sprague-Dawley , Medición de Riesgo , Plata/administración & dosificación , Factores de Tiempo
6.
Am J Respir Cell Mol Biol ; 48(1): 114-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23065132

RESUMEN

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAHs) and is a dominant contributor to urban particulate pollution (PM). Exposure to PM is linked to respiratory and cardiovascular morbidity and mortality in susceptible populations, such as children. PM can contribute to the development and exacerbation of asthma, and this is thought to occur because of the presence of electrophiles in PM or through electrophile generation via the metabolism of PAHs. Glutathione (GSH), an abundant intracellular antioxidant, confers cytoprotection through conjugation of electrophiles and reduction of reactive oxygen species. GSH-dependent phase II detoxifying enzymes glutathione peroxidase and glutathione S-transferase facilitate metabolism and conjugation, respectively. Ambient particulates are highly variable in composition, which complicates systematic study. In response, we have developed a replicable ultrafine premixed flame particle (PFP)-generating system for in vivo studies. To determine particle effects in the developing lung, 7-day-old neonatal and adult rats inhaled 22 µg/m(3) PFP during a single 6-hour exposure. Pulmonary GSH and related phase II detoxifying gene and protein expression were evaluated 2, 24, and 48 hours after exposure. Neonates exhibited significant depletion of GSH despite higher initial baseline levels of GSH. Furthermore, we observed attenuated induction of phase II enzymes (glutamate cysteine ligase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) in neonates compared with adult rats. We conclude that developing neonates have a limited ability to deviate from their normal developmental pattern that precludes adequate adaptation to environmental pollutants, which results in enhanced cytotoxicity from inhaled PM.


Asunto(s)
Antioxidantes/metabolismo , Glutatión/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Material Particulado/toxicidad , Administración por Inhalación , Factores de Edad , Animales , Animales Recién Nacidos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Disulfuro de Glutatión/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Pulmón/crecimiento & desarrollo , Masculino , Estrés Oxidativo/efectos de los fármacos , Material Particulado/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Emisiones de Vehículos/toxicidad , Glutatión Peroxidasa GPX1
7.
Am J Physiol Lung Cell Mol Physiol ; 304(10): L665-77, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23502512

RESUMEN

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Pulmón/efectos de los fármacos , Pulmón/enzimología , Material Particulado/farmacología , Siliconas/farmacología , Animales , Animales Recién Nacidos , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Células Cultivadas , Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1B1 , Inducción Enzimática , Humanos , Pulmón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo , Células U937 , Regulación hacia Arriba/efectos de los fármacos
8.
Part Fibre Toxicol ; 10: 1, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23305071

RESUMEN

The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS). The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.


Asunto(s)
Europio/química , Gadolinio/farmacocinética , Pulmón/metabolismo , Nanopartículas/química , Animales , Cristalización , Gadolinio/química , Exposición por Inhalación , Masculino , Tasa de Depuración Metabólica , Ratones , Microscopía Electrónica de Transmisión , Especificidad de Órganos , Tamaño de la Partícula , Solubilidad , Espectrofotometría Atómica , Coloración y Etiquetado , Propiedades de Superficie , Distribución Tisular , Difracción de Rayos X
9.
Part Fibre Toxicol ; 10: 34, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23902943

RESUMEN

BACKGROUND: Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). OBJECTIVES: Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. METHODS: We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 µg/m3 PFPs. RESULTS: We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. CONCLUSIONS: We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in young adult animals, that are unaffected in neonates. We conclude that the inability of neonatal animals to upregulate the antioxidant response may, in part, explain enhanced their susceptibility to ultrafine particles, such as PFP.


Asunto(s)
Antioxidantes/metabolismo , Pulmón/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Hollín/toxicidad , Factores de Edad , Animales , Animales Recién Nacidos , Catalasa/genética , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Exposición por Inhalación , Pulmón/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/genética , Tamaño de la Partícula , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factores de Tiempo , Transfección , Células U937
10.
Methods Appl Fluoresc ; 9(3)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33973872

RESUMEN

With the use of engineered nano-materials (ENM) becoming more prevalent, it is essential to determine potential human health impacts. Specifically, the effects on biological lipid membranes will be important for determining molecular events that may contribute to both toxicity and suitable biomedical applications. To better understand the mechanisms of ENM-induced hemolysis and membrane permeability, fluorescence lifetime imaging microscopy (FLIM) was performed on human red blood cells (RBC) exposed to titanium dioxide ENM, zinc oxide ENM, or micron-sized crystalline silica. In the FLIM images, changes in the intensity-weighted fluorescence lifetime of the lipophilic fluorescence probe Di-4-ANEPPDHQ were used to identify localized changes to membrane. Time-resolved fluorescence anisotropy and FLIM of RBC treated with methyl-ß-cyclodextrin was performed to aid in interpreting how changes to membrane order influence changes in the fluorescence lifetime of the probe. Treatment of RBC with methyl-ß-cyclodextrin caused an increase in the wobble-in-a-cone angle and shorter fluorescence lifetimes of di-4-ANEPPDHQ. Treatment of RBC with titanium dioxide caused a significant increase in fluorescence lifetime compared to non-treated samples, indicating increased membrane order. Crystalline silica also increased the fluorescence lifetime compared to control levels. In contrast, zinc oxide decreased the fluorescence lifetime, representing decreased membrane order. However, treatment with soluble zinc sulfate resulted in no significant change in fluorescence lifetime, indicating that the decrease in order of the RBC membranes caused by zinc oxide ENM was not due to zinc ions formed during potential dissolution of the nanoparticles. These results give insight into mechanisms for how these three materials might disrupt RBC membranes and membranes of other cells. The results also provide evidence for a direct correlation between the size, interaction-available surface area of the nano-material and cell membrane disruption.


Asunto(s)
Membrana Eritrocítica/efectos de los fármacos , Nanoestructuras/toxicidad , Polarización de Fluorescencia/métodos , Colorantes Fluorescentes/química , Hemólisis/efectos de los fármacos , Humanos , Microscopía Fluorescente/métodos , Nanoestructuras/química , Tamaño de la Partícula , Compuestos de Piridinio/química , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Titanio/química , Titanio/toxicidad , Óxido de Zinc/química , Óxido de Zinc/toxicidad , beta-Ciclodextrinas/farmacología
11.
Inhal Toxicol ; 22 Suppl 2: 70-83, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20961279

RESUMEN

Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates, and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-h exposure of laboratory generated fine diffusion flame particles (DFP; 170 µg/m(3)), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 h after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased lactate dehydrogenase activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure whereas only 6 genes were altered in the airways of neonates. Glutamate cysteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults.


Asunto(s)
Antioxidantes/metabolismo , Inhalación , Pulmón/patología , Material Particulado/toxicidad , Sistema Respiratorio/patología , Hollín/toxicidad , Administración por Inhalación , Factores de Edad , Animales , Animales Recién Nacidos , Líquido del Lavado Bronquioalveolar , Catalasa/metabolismo , Expresión Génica , Glutamato-Cisteína Ligasa/metabolismo , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Sistema Respiratorio/metabolismo
12.
Biochim Biophys Acta Biomembr ; 1862(9): 183313, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32304756

RESUMEN

Engineered nano-materials (ENM) have been reported to affect lipid membrane permeability in cell models, but a mechanistic understanding of how these materials interact with biological membranes has not been described. To assess mechanisms of permeability, liposomes composed of DOPC, DOPS, or POPC, with or without cholesterol, were used as model membranes for measuring ENM-induced changes to lipid order to improve our understanding of ENM effects on membrane permeability. Liposomes were treated with either titanium dioxide (TiO2) or zinc oxide (ZnO) ENM, and changes to lipid order were measured by time-resolved fluorescence anisotropy of a lipophilic probe, Di-4-ANEPPDHQ. Both ENM increased lipid order in two lipid models differing in headgroup charge. TiO2 increased lipid order of POPC liposomes (neutral charge), while ZnO acted primarily on DOPS liposomes (negative charge). Addition of cholesterol to these models significantly increased lipid order while in some cases attenuated ENM-induced changes to lipid order. To assess the ability of ENM to induce membrane permeability, liposomes composed of the above lipids were assayed for membrane permeability by calcein leakage in response to ENM. Both ENM caused a dose-dependent increase in permeability in all liposome models tested, and the addition of cholesterol to the liposome models neither blocked nor reduced calcein leakage. Together, these experiments show that ENM increased permeability of small molecules (calcein) from model liposomes, and that the magnitude of the effect of ENM on lipid order depended on ENM surface charge, lipid head group charge and the presence of cholesterol in the membrane.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Liposomas/antagonistas & inhibidores , Lípidos de la Membrana/química , Nanoestructuras/efectos adversos , Colesterol/química , Humanos , Liposomas/química , Lípidos de la Membrana/antagonistas & inhibidores , Nanoestructuras/química , Titanio/farmacología , Óxido de Zinc/farmacología
13.
Environ Health Perspect ; 124(12): 1870-1875, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27152509

RESUMEN

BACKGROUND: Silver nanoparticles (AgNP) are present in personal, commercial, and industrial products, which are often aerosolized. Current understanding of the deposition, translocation, and health-related impacts of AgNP inhalation is limited. OBJECTIVES: We determined a) the deposition and retention of inhaled Ag in the nasal cavity from nose-only exposure; b) the timing for Ag translocation to and retention/clearance in the olfactory bulb (OB); and c) whether the presence of Ag in the OB affects microglial activity. METHODS: Male Sprague-Dawley rats were exposed nose-only to citrate-buffered 20- or 110-nm AgNP (C20 or C110, respectively) or citrate buffer alone for 6 hr. The nasal cavity and OB were examined for the presence of Ag and for biological responses up to 56 days post-exposure (8 weeks). RESULTS: The highest nasal Ag deposition was observed on Day 0 for both AgNP sizes. Inhalation of aerosolized C20 resulted in rapid translocation of Ag to the OB and in microglial activation at Days 0, 1, and 7. In contrast, inhalation of C110 resulted in a gradual but progressive transport of Ag to and retention in the OB, with a trend for microglial activation to variably be above control. CONCLUSIONS: The results of this study show that after rats experienced a 6-hr inhalation exposure to 20- and 110-nm AgNP at a single point in time, Ag deposition in the nose, the rate of translocation to the brain, and subsequent microglial activation in the OB differed depending on AgNP size and time since exposure. Citation: Patchin ES, Anderson DS, Silva RM, Uyeminami DL, Scott GM, Guo T, Van Winkle LS, Pinkerton KE. 2016. Size-dependent deposition, translocation, and microglial activation of inhaled silver nanoparticles in the rodent nose and brain. Environ Health Perspect 124:1870-1875; http://dx.doi.org/10.1289/EHP234.


Asunto(s)
Exposición por Inhalación , Nanopartículas del Metal/análisis , Plata/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Masculino , Microglía/fisiología , Cavidad Nasal/química , Bulbo Olfatorio/química , Ratas , Ratas Sprague-Dawley
14.
Nanoscale ; 8(22): 11518-30, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27198643

RESUMEN

Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 µg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.


Asunto(s)
Aerosoles , Gadolinio , Pulmón/efectos de los fármacos , Nanopartículas del Metal , Contaminantes Atmosféricos/análisis , Animales , Europio , Exposición por Inhalación , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad
15.
J Phys Chem B ; 119(49): 15118-29, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26562364

RESUMEN

Single-cell mechanics, derived from atomic force microscopy-based technology, provides a new and effective means to investigate nanomaterial-cell interactions upon in vivo exposure. Lung macrophages represent initial and important responses upon introducing nanoparticles into the respiratory tract, as well as particle clearance with time. Cellular mechanics has previously proven effective to probe in vitro nanomaterial-cell interactions. This study extends technology further to probe the interactions between primary alveolar macrophages (AM) and silver nanoparticles (AgNPs) upon in vivo exposure. Two types of AgNPs, 20 and 110 nm, were instilled to rat lung at 0.5 mg AgNPs/kg body weight, and allowed 24 h interaction. The consequences of these interactions were investigated by harvesting the primary AMs while maintaining their biological status. Cellular mechanics measurements revealed the diverse responses among AM cells, due to variations in AgNP uptake and oxidative dissolving into Ag(+). Three major responses are evident: zero to low uptake that does not alter cellular mechanics, intracellular accumulation of AgNPs trigger cytoskeleton rearrangement resulting in the stiffening of mechanics, and damage of cytoskeleton that softens the mechanical profile. These effects were confirmed using confocal imaging of F-actin and measurements of reactive oxygen species production. More detailed intracellular interactions will also be discussed on the basis of this study in conjunction with prior knowledge of AgNP toxicity.


Asunto(s)
Macrófagos Alveolares/metabolismo , Nanopartículas del Metal/química , Sondas Moleculares , Plata/química , Análisis de la Célula Individual , Animales , Macrófagos Alveolares/citología , Microscopía de Fuerza Atómica , Ratas , Especies Reactivas de Oxígeno/metabolismo
16.
Nanotoxicology ; 9(5): 591-602, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25231189

RESUMEN

Increasing silver nanoparticle (AgNP) use in sprays, consumer products, and medical devices has raised concerns about potential health effects. While previous studies have investigated AgNPs, most were limited to a single particle size or surface coating. In this study, we investigated the effect of size, surface coating, and dose on the persistence of silver in the lung following exposure to AgNP. Adult male rats were intratracheally instilled with four different AgNPs: 20 or 110 nm in size and coated with either citrate or polyvinylpyrrolidone (PVP) at 0.5 or 1.0 mg/kg doses. Silver retention was assessed in the lung at 1, 7, and 21 d post exposure. ICP-MS quantification demonstrated that citrate-coated AgNPs persisted in the lung to 21 d with retention greater than 90%, while PVP-coated AgNP had less than 30% retention. Localization of silver in lung tissue at 1 d post exposure demonstrated decreased silver in proximal airways exposed to 110 nm particles compared with 20 nm AgNPs. In terminal bronchioles 1 d post exposure, silver was localized to surface epithelium but was more prominent in the basement membrane at 7 d. Silver positive macrophages in bronchoalveolar lavage fluid decreased more quickly after exposure to particles coated with PVP. We conclude that PVP-coated AgNPs had less retention in the lung tissue over time and larger particles were more rapidly cleared from large airways than smaller particles. The 20 nm citrate particles showed the greatest effect, increasing lung macrophages even 21 d after exposure, and resulted in the greatest silver retention in lung tissue.


Asunto(s)
Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/farmacocinética , Plata/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Relación Dosis-Respuesta a Droga , Pulmón/metabolismo , Macrófagos/metabolismo , Masculino , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Polivinilos/química , Pirrolidinas/química , Ratas Sprague-Dawley , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Plata/química , Propiedades de Superficie
17.
Toxicol Sci ; 144(1): 151-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25628415

RESUMEN

Silver nanoparticles (Ag NPs) can be found in myriad consumer products, medical equipment/supplies, and public spaces. However, questions remain regarding the risks associated with Ag NP exposure. As part of a consortium-based effort to better understand these nanomaterials, this study examined how Ag NPs with varying sizes and coatings affect pulmonary responses at different time-points. Four types of Ag NPs were tested: 20 nm (C20) and 110 nm (C110) citrate-stabilized NPs, and 20 nm (P20) and 110 nm (P110) PVP-stabilized NPs. Male, Sprague Dawley rats were intratracheally instilled with Ag NPs (0, 0.1, 0.5, or 1.0 mg/kg bodyweight [BW]), and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained at 1, 7, and 21 days post-exposure for analysis of BAL cells and histopathology. All Ag NP types produced significantly elevated polymorphonuclear cells (PMNs) in BALF on Days 1, 7, and/or 21 at the 0.5 and/or 1.0 mg/kg BW dose(s). Histology of animals exposed to 1.0 mg/kg BW Ag NPs showed patchy, focal, centriacinar inflammation for all time-points; though neutrophils, macrophages, and/or monocytes were also found in the airway submucosa and perivascular regions at Days 1 and 7. Confocal microscopy of ethidium homodimer-stained lungs at Day 1 showed dead/dying cells at branch points along the main airway. By Day 21, only animals exposed to the high dose of C110 or P110 exhibited significant BALF neutrophilia and marked cellular debris in alveolar airspaces. Findings suggest that 110 nm Ag NPs may produce lasting effects past Day 21 post instillation.


Asunto(s)
Exposición por Inhalación , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Neumonía/inducido químicamente , Plata/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Ácido Cítrico/química , Ácido Cítrico/toxicidad , Relación Dosis-Respuesta a Droga , Pulmón/metabolismo , Pulmón/patología , Masculino , Nanopartículas del Metal/química , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Tamaño de la Partícula , Neumonía/metabolismo , Neumonía/patología , Povidona/química , Povidona/toxicidad , Ratas Sprague-Dawley , Medición de Riesgo , Plata/química , Propiedades de Superficie , Factores de Tiempo
18.
Toxicol Sci ; 144(2): 366-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25577195

RESUMEN

The growing use of silver nanoparticles (AgNPs) in consumer products raises concerns about potential health effects. This study investigated the persistence and clearance of 2 different size AgNPs (20 and 110 nm) delivered to rats by single nose-only aerosol exposures (6 h) of 7.2 and 5.4 mg/m(3), respectively. Rat lung tissue was assessed for silver accumulations using inductively-coupled plasma mass spectrometry (ICP-MS), autometallography, and enhanced dark field microscopy. Involvement of tissue macrophages was assessed by scoring of silver staining in bronchoalveolar lavage fluid (BALF). Silver was abundant in most macrophages at 1 day post-exposure. The group exposed to 20 nm AgNP had the greatest number of silver positive BALF macrophages at 56 days post-exposure. While there was a significant decrease in the amount of silver in lung tissue at 56 days post-exposure compared with 1 day following exposure, at least 33% of the initial delivered dose was still present for both AgNPs. Regardless of particle size, silver was predominantly localized within the terminal bronchial/alveolar duct junction region of the lung associated with extracellular matrix and within epithelial cells. Inhalation of both 20 and 110 nm AgNPs resulted in a persistence of silver in the lung at 56 days post-exposure and local deposition as well as accumulation of silver at the terminal bronchiole alveolar duct junction. Further the smaller particles, 20 nm AgNP, produced a greater silver burden in BALF macrophages as well as greater persistence of silver positive macrophages at later timepoints (21 and 56 days).


Asunto(s)
Aerosoles , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Plata/química , Animales , Líquido del Lavado Bronquioalveolar , Pulmón/fisiología , Macrófagos/ultraestructura , Masculino , Microscopía Electrónica de Transmisión , Ratas , Ratas Sprague-Dawley
19.
ACS Nano ; 8(9): 8911-31, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25144856

RESUMEN

Inhaled multiwalled carbon nanotubes (MWCNTs) may cause adverse pulmonary responses due to their nanoscale, fibrous morphology and/or biopersistance. This study tested multiple factors (dose, time, physicochemical characteristics, and administration method) shown to affect MWCNT toxicity with the hypothesis that these factors will influence significantly different responses upon MWCNT exposure. The study is unique in that (1) multiple administration methods were tested using particles from the same stock; (2) bulk MWCNT formulations had few differences (metal content, surface area/functionalization); and (3) MWCNT retention was quantified using a specialized approach for measuring unlabeled MWCNTs in rodent lungs. Male Sprague-Dawley rats were exposed to original (O), purified (P), and carboxylic acid functionalized (F) MWCNTs via intratracheal instillation and inhalation. Blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected at postexposure days 1 and 21 for quantifying biological responses and MWCNTs in lung tissues by programmed thermal analysis. At day 1, MWCNT instillation produced significant BALF neutrophilia and MWCNT-positive macrophages. Instilled O- and P-MWCNTs produced significant inflammation in lung tissues, which resolved by day 21 despite MWCNT retention. MWCNT inhalation produced no BALF neutrophilia and no significant histopathology past day 1. However, on days 1 and 21 postinhalation of nebulized MWCNTs, significantly increased numbers of MWCNT-positive macrophages were observed in BALF. Results suggest (1) MWCNTs produce transient inflammation if any despite persistence in the lungs; (2) instilled O-MWCNTs cause more inflammation than P- or F-MWCNTs; and (3) MWCNT suspension media produce strikingly different effects on physicochemical particle characteristics and pulmonary responses.


Asunto(s)
Salud , Nanotubos de Carbono/toxicidad , Pruebas de Toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar , Ácidos Carboxílicos/química , Diferenciación Celular/efectos de los fármacos , Fenómenos Químicos , Relación Dosis-Respuesta a Droga , Instilación de Medicamentos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Masculino , Nanotubos de Carbono/química , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Agua/química
20.
Toxicol Sci ; 124(2): 472-86, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21914721

RESUMEN

Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Incendios , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Hollín/toxicidad , Contaminantes Atmosféricos/química , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/patología , Masculino , Microscopía Electrónica de Transmisión , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Tamaño de la Partícula , Antígeno Nuclear de Célula en Proliferación/genética , Ratas , Ratas Sprague-Dawley , Hollín/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA