Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(1): e1011121, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227612

RESUMEN

Plasma membrane (PM) H+-ATPases of the P-type family are highly conserved in yeast, other fungi, and plants. Their main role is to establish an H+ gradient driving active transport of small ions and metabolites across the PM and providing the main component of the PM potential. Furthermore, in both yeast and plant cells, conditions have been described under which active H+-ATPases promote activation of TORC1, the rapamycin-sensitive kinase complex controlling cell growth. Fungal and plant PM H+-ATPases are self-inhibited by their respective cytosolic carboxyterminal tails unless this domain is phosphorylated at specific residues. In the yeast H+-ATPase Pma1, neutralization of this autoinhibitory domain depends mostly on phosphorylation of the adjacent Ser911 and Thr912 residues, but the kinase(s) and phosphatase(s) controlling this tandem phosphorylation remain unknown. In this study, we show that S911-T912 phosphorylation in Pma1 is mediated by the largely redundant Ptk1 and Ptk2 kinase paralogs. Dephosphorylation of S911-T912, as occurs under glucose starvation, is dependent on the Glc7 PP1 phosphatase. Furthermore, proper S911-T912 phosphorylation in Pma1 is required for optimal TORC1 activation upon H+ influx coupled amino-acid uptake. We finally show that TORC1 controls S911-T912 phosphorylation in a manner suggesting that activated TORC1 promotes feedback inhibition of Pma1. Our results shed important new light on phosphoregulation of the yeast Pma1 H+-ATPase and on its interconnections with TORC1.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo
2.
J Sep Sci ; 47(13): e2400318, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982556

RESUMEN

Monitoring the levels of amino acids (AAs) in biological cell cultures provides key information to understand the regulation of cell growth and metabolism. Saccharomyces cerevisiae can naturally excrete AAs, making accurate detection and determination of amino acid levels within the cultivation medium pivotal for gaining insights into this still poorly known process. Given that most AAs lack ultraviolet (UV) chromophores or fluorophores necessary for UV and fluorescence detection, derivatization is commonly utilized to enhance amino acid detectability via UV absorption. Unfortunately, this can lead to drawbacks such as derivative instability, labor intensiveness, and poor reproducibility. Hence, this study aimed to develop an accurate and stable hydrophilic interaction liquid chromatography-tandem mass spectrometry analytical method for the separation of all 20 AAs within a short 17-min run time. The method provides satisfactory linearity and sensitivity for all analytes. The method has been validated for intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. It has been successfully applied to quantify 20 AAs in samples of yeast cultivation medium. This endeavor seeks to enhance our comprehension of amino acid profiles in the context of cell growth and metabolism within yeast cultivation media.


Asunto(s)
Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Saccharomyces cerevisiae , Espectrometría de Masas en Tándem , Aminoácidos/metabolismo , Aminoácidos/análisis , Espectrometría de Masas en Tándem/métodos , Saccharomyces cerevisiae/metabolismo , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos
3.
PLoS Genet ; 16(8): e1008966, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776922

RESUMEN

The vacuole of the yeast Saccharomyces cerevisiae plays an important role in nutrient storage. Arginine, in particular, accumulates in the vacuole of nitrogen-replete cells and is mobilized to the cytosol under nitrogen starvation. The arginine import and export systems involved remain poorly characterized, however. Furthermore, how their activity is coordinated by nitrogen remains unknown. Here we characterize Vsb1 as a novel vacuolar membrane protein of the APC (amino acid-polyamine-organocation) transporter superfamily which, in nitrogen-replete cells, is essential to active uptake and storage of arginine into the vacuole. A shift to nitrogen starvation causes apparent inhibition of Vsb1-dependent activity and mobilization of stored vacuolar arginine to the cytosol. We further show that this arginine export involves Ypq2, a vacuolar protein homologous to the human lysosomal cationic amino acid exporter PQLC2 and whose activity is detected only in nitrogen-starved cells. Our study unravels the main arginine import and export systems of the yeast vacuole and suggests that they are inversely regulated by nitrogen.


Asunto(s)
Arginina/metabolismo , Nitrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aminoácidos/genética , Transporte Biológico/genética , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/genética , Vacuolas/metabolismo
4.
PLoS Genet ; 16(8): e1008745, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845888

RESUMEN

Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingolípidos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Homeostasis , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/biosíntesis
5.
Proc Natl Acad Sci U S A ; 115(14): E3145-E3154, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29559531

RESUMEN

The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named "eisosomes" that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Membrana Celular/metabolismo , Endocitosis/fisiología , Alimentos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Inanición , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Conformación Molecular , Saccharomyces cerevisiae/crecimiento & desarrollo , Esfingolípidos/metabolismo , Ubiquitinación
6.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638549

RESUMEN

Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antifúngicos/farmacología , Cicloheximida/farmacología , Endocitosis/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación/efectos de los fármacos
7.
Int J Mol Sci ; 19(4)2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29659503

RESUMEN

The year 2016 marked the 20th anniversary of the death of Marcelle Grenson and the 50th anniversary of her first publication on yeast amino acid transport, the topic to which, as Professor at the Free University of Brussels (ULB), she devoted the major part of her scientific career. M. Grenson was the first scientist in Belgium to introduce and apply genetic analysis in yeast to dissect the molecular mechanisms that were underlying complex problems in biology. Today, M. Grenson is recognized for the pioneering character of her work on the diversity and regulation of amino acid transporters in yeast. The aim of this tribute is to review the major milestones of her forty years of scientific research that were conducted between 1950 and 1990.


Asunto(s)
Bioquímica/historia , Sistemas de Transporte de Aminoácidos , Aminoácidos/metabolismo , Transporte Biológico , Historia del Siglo XX , Biosíntesis de Proteínas , Saccharomyces cerevisiae
8.
Adv Exp Med Biol ; 892: 69-106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26721271

RESUMEN

Amino acids constitute a major nutritional source for probably all fungi. Studies of model species such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans have shown that they possess multiple amino acid transporters. These proteins belong to a limited number of superfamilies, now defined according to protein fold in addition to sequence criteria, and differ in subcellular location, substrate specificity range, and regulation. Structural models of several of these transporters have recently been built, and the detailed molecular mechanisms of amino acid recognition and translocation are now being unveiled. Furthermore, the particular conformations adopted by some of these transporters in response to amino acid binding appear crucial to promoting their ubiquitin-dependent endocytosis and/or to triggering signaling responses. We here summarize current knowledge, derived mainly from studies on S. cerevisiae and A. nidulans, about the transport activities, regulation, and sensing role of fungal amino acid transporters, in relation to predicted structure.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Aspergillus nidulans/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/química , Aspergillus nidulans/genética , Transporte Biológico , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad de la Especie , Relación Estructura-Actividad , Especificidad por Sustrato
9.
J Biol Chem ; 289(32): 22103-16, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24942738

RESUMEN

Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Arrestinas/metabolismo , Sitios de Unión , Regulación hacia Abajo/efectos de los fármacos , Lisina/química , Modelos Biológicos , Modelos Moleculares , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Estrés Fisiológico , Factores de Transcripción/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
10.
J Biol Chem ; 289(10): 7232-7246, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24448798

RESUMEN

Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H(+)-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H(+) coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Arginina/metabolismo , Sitios de Unión/genética , Transporte Biológico , Imagenología Tridimensional , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 109(50): E3434-43, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23169667

RESUMEN

Cystinosin, the lysosomal cystine exporter defective in cystinosis, is the founding member of a family of heptahelical membrane proteins related to bacteriorhodopsin and characterized by a duplicated motif termed the PQ loop. PQ-loop proteins are more frequent in eukaryotes than in prokaryotes; except for cystinosin, their molecular function remains elusive. In this study, we report that three yeast PQ-loop proteins of unknown function, Ypq1, Ypq2, and Ypq3, localize to the vacuolar membrane and are involved in homeostasis of cationic amino acids (CAAs). We also show that PQLC2, a mammalian PQ-loop protein closely related to yeast Ypq proteins, localizes to lysosomes and catalyzes a robust, electrogenic transport that is selective for CAAs and strongly activated at low extracytosolic pH. Heterologous expression of PQLC2 at the yeast vacuole rescues the resistance phenotype of an ypq2 mutant to canavanine, a toxic analog of arginine efficiently transported by PQLC2. Finally, PQLC2 transports a lysine-like mixed disulfide that serves as a chemical intermediate in cysteamine therapy of cystinosis, and PQLC2 gene silencing trapped this intermediate in cystinotic cells. We conclude that PQLC2 and Ypq1-3 proteins are lysosomal/vacuolar exporters of CAAs and suggest that small-molecule transport is a conserved feature of the PQ-loop protein family, in agreement with its distant similarity to SWEET sugar transporters and to the mitochondrial pyruvate carrier. The elucidation of PQLC2 function may help improve cysteamine therapy. It may also clarify the origin of CAA abnormalities in Batten disease.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Cistinosis/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Animales , Secuencia de Bases , Proteínas de Caenorhabditis elegans/genética , Canavanina/metabolismo , ARN Helicasas DEAD-box , ADN Complementario/genética , Proteínas de Drosophila , Fenómenos Electrofisiológicos , Femenino , Genes Fúngicos , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Oocitos/metabolismo , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Vacuolas/metabolismo , Xenopus laevis
12.
Microb Cell Fact ; 12: 129, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24369062

RESUMEN

BACKGROUND: Decades of work requiring heterologous expression of eukaryotic proteins have shown that no expression system can be considered as the panacea and the appropriate expression strategy is often protein-dependent. In a large number of cases, yeasts have proven to be reliable organisms for heterologous protein expression by combining eukaryotic cellular organization with the ease of use of simpler microorganisms. RESULTS: During this work, a novel promoter system based on the nitrogen catabolite regulation has been developed to produce the general amino acid permease (Gap1) in its natural host, the yeast Saccharomyces cerevisiae. A simple purification protocol was also established that allows to purify milligrams of Gap1 from cells cultivated in a five liters bio-reactor. In order to test the ability of the system to be used for expression of other proteins, the yeast specific transporter of γ-aminobutyric acid (Uga4), a human vesicular transporter of glutamate (Vglut1) and a small secreted glycoprotein (MD-2) were also expressed using the nitrogen catabolite regulation. All proteins were fused to GFP and their presence and localization were confirmed by western blot analysis and fluorescence microscopy. CONCLUSIONS: Our work shows that the nitrogen catabolite repressible GAP1 promoter can be used to obtain high levels of recombinant protein while allowing for large biomass production in S. cerevisiae. This approach can be used to express membrane and soluble proteins from higher eukaryotes (from yeast to human). Therefore, this system stands as a promising alternative to commonly used expression procedure in yeasts.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética
13.
Nucleic Acids Res ; 39(15): 6340-58, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21572103

RESUMEN

With the growing number of available microbial genome sequences, regulatory signals can now be revealed as conserved motifs in promoters of orthologous genes (phylogenetic footprints). A next challenge is to unravel genome-scale regulatory networks. Using as sole input genome sequences, we predicted cis-regulatory elements for each gene of the yeast Saccharomyces cerevisiae by discovering over-represented motifs in the promoters of their orthologs in 19 Saccharomycetes species. We then linked all genes displaying similar motifs in their promoter regions and inferred a co-regulation network including 56,919 links between 3171 genes. Comparison with annotated regulons highlights the high predictive value of the method: a majority of the top-scoring predictions correspond to already known co-regulations. We also show that this inferred network is as accurate as a co-expression network built from hundreds of transcriptome microarray experiments. Furthermore, we experimentally validated 14 among 16 new functional links between orphan genes and known regulons. This approach can be readily applied to unravel gene regulatory networks from hundreds of microbial genomes for which no other information is available except the sequence. Long-term benefits can easily be perceived when considering the exponential increase of new genome sequences.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Genómica/métodos , Algoritmos , Sitios de Unión , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Genoma Fúngico , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Regiones Promotoras Genéticas , Regulón , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
14.
Sci Rep ; 13(1): 4986, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973391

RESUMEN

Bacterial contaminations in yeast fermentation tanks are a recurring problem for the bioethanol production industry. Lactic acid bacteria (LAB), particularly of the genus Lactobacillus, are the most common contaminants. Their proliferation can reduce fermentation efficiency or even impose premature shutdown for cleaning. We have previously reported that laboratory yeast strains naturally excrete amino acids via transporters of the Drug: H+ Antiporter-1 (DHA1) family. This excretion allows yeast to cross-feed LAB, which are most often unable to grow without an external amino acid supply. Whether industrial yeast strains used in bioethanol production likewise promote LAB proliferation through cross-feeding has not been investigated. In this study, we first show that the yeast strain Ethanol Red used in ethanol production supports growth of Lactobacillus fermentum in an amino-acid-free synthetic medium. This effect was markedly reduced upon homozygous deletion of the QDR3 gene encoding a DHA1-family amino acid exporter. We further show that cultivation of Ethanol Red in a nonsterile sugarcane-molasses-based medium is associated with an increase in lactic acid due to LAB growth. When Ethanol Red lacked the QDR1, QDR2, and QDR3 genes, this lactic acid production was not observed and ethanol production was not significantly reduced. Our results indicate that Ethanol Red cultivated in synthetic or molasses medium sustains LAB proliferation in a manner that depends on its ability to excrete amino acids via Qdr transporters. They further suggest that using mutant industrial yeast derivatives lacking DHA1-family amino acid exporters may be a way to reduce the risk of bacterial contaminations during fermentation.


Asunto(s)
Lactobacillales , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Homocigoto , Microbiología Industrial , Eliminación de Secuencia , Etanol/metabolismo , Fermentación , Ácido Láctico/metabolismo , Aminoácidos/metabolismo
15.
Cell Rep ; 42(12): 113561, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096056

RESUMEN

Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.


Asunto(s)
Ferroptosis , Saccharomyces cerevisiae , Peroxidación de Lípido , Antioxidantes , Ácidos Grasos Insaturados
16.
J Biol Chem ; 286(14): 12006-15, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21310956

RESUMEN

The yeast Ssy5 protein is a serine-type endoprotease autoprocessed into a catalytic domain and a large inhibitory prodomain. When external amino acids are detected by the plasma membrane Ssy1 sensor, Ssy5 is activated and catalyzes endoproteolytic processing of the Stp1 and Stp2 transcription factors. These Stp proteins then migrate into the nucleus and activate transcription of several amino acid permease genes. Previous studies showed that Ssy5 activation involves the SCFGrr1 ubiquitin ligase complex, but the molecular mechanisms of this activation remain unclear. We here report that the prodomain of Ssy5 is phosphorylated in a casein kinase I-dependent manner in response to amino acid detection. We describe a mutant form of Ssy5 whose prodomain is not phosphorylated and show that it is nonfunctional. Amino acid detection also induces ubiquitylation of the Ssy5 prodomain. This prodomain ubiquitylation requires its prior phosphorylation and the SCFGrr1 complex. When this ubiquitylation is defective, Ssy5 accumulates as a phosphorylated form but remains inactive. A constitutive Ssy5 form in which the prodomain fails to inhibit the catalytic domain does not need to be phosphorylated or ubiquitylated to be active. Finally, we provide evidence that ubiquitylation of the inhibitory prodomain rather than its subsequent degradation is the key step in the Ssy5 activation mechanism. We propose that the Ssy5 protease is activated by phosphorylation-induced ubiquitylation, the effect of which is relief from inhibition by its prodomain.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Proteasas/metabolismo , Ubiquitinación/fisiología , Levaduras/enzimología , Aminoácidos/genética , Aminoácidos/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Immunoblotting , Inmunoprecipitación , Fosforilación/genética , Fosforilación/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Serina Proteasas/genética , Ubiquitinación/genética , Levaduras/genética , Levaduras/metabolismo
17.
iScience ; 25(5): 104238, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494253

RESUMEN

The TORC1 (Target of Rapamycin Complex 1) kinase complex plays a pivotal role in controlling cell growth in probably all eukaryotic species. The signals and mechanisms regulating TORC1 have been intensely studied in mammals but those of fungi and plants are much less known. We have previously reported that the yeast plasma membrane H+-ATPase Pma1 promotes TORC1 activation when stimulated by cytosolic acidification or nutrient-uptake-coupled H+ influx. Furthermore, a homologous plant H+-ATPase can substitute for yeast Pma1 to promote this H+-elicited TORC1 activation. We here report that TORC1 activity in Nicotiana tabacum BY-2 cells is also strongly influenced by the activity of plasma membrane H+-ATPases. In particular, stimulation of H+-ATPases by fusicoccin activates TORC1, and this response is also observed in cells transferred to a nutrient-free and auxin-free medium. Our results suggest that plant H+-ATPases, known to be regulated by practically all factors controlling cell growth, contribute to TOR signaling.

18.
J Biol Chem ; 285(2): 855-65, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19906648

RESUMEN

When yeast cells detect external amino acids via their permease-like Ssy1 sensor, the cytosolic precursor forms of Stp1 and Stp2 transcription factors are activated by endoproteolytic removal of their N-terminal domains, a reaction catalyzed by the Ssy5 endoprotease. The processed Stp factors then migrate into the nucleus, where they activate transcription of several amino acid permease genes including AGP1. We report here that the STP1 and STP2 genes most likely derive from the whole genome duplication that occurred in a yeast ancestor. Although Stp1 and Stp2 have been considered redundant, we provide evidence that they functionally diverged during evolution. Stp2 is the only factor processed when amino acids are present at low concentration, and the transcriptional activation of AGP1 promoted by Stp2 is moderate. Furthermore, only Stp2 can sustain Agp1-dependent utilization of amino acids at low concentration. In contrast, Stp1 is only processed when amino acids are present at high concentration, and it promotes higher level transcriptional activation of AGP1. Domain swapping experiments show that the N-terminal domains of Stp1 and Stp2 are responsible for these proteins being cleaved at different amino acid concentrations. Last, induction of the DIP5 permease gene by amino acids depends on Stp2 but not Stp1. We propose that post-whole genome duplication co-conservation of the STP1 and STP2 genes was favored by functional divergence of their products, likely conferring to cells an increased ability to adapt to various amino acid supply conditions.


Asunto(s)
Aminoácidos/farmacología , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Fúngico/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/inmunología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
19.
Biochim Biophys Acta ; 1798(10): 1908-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20599686

RESUMEN

Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Internet , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
20.
Sci Rep ; 11(1): 4788, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637787

RESUMEN

The Target of Rapamycin Complex 1 (TORC1) involved in coordination of cell growth and metabolism is highly conserved among eukaryotes. Yet the signals and mechanisms controlling its activity differ among taxa, according to their biological specificities. A common feature of fungal and plant cells, distinguishing them from animal cells, is that their plasma membrane contains a highly abundant H+-ATPase which establishes an electrochemical H+ gradient driving active nutrient transport. We have previously reported that in yeast, nutrient-uptake-coupled H+ influx elicits transient TORC1 activation and that the plasma-membrane H+-ATPase Pma1 plays an important role in this activation, involving more than just establishment of the H+ gradient. We show here that the PMA2 H+-ATPase from the plant Nicotiana plumbaginifolia can substitute for Pma1 in yeast, to promote H+-elicited TORC1 activation. This H+-ATPase is highly similar to Pma1 but has a longer carboxy-terminal tail binding 14-3-3 proteins. We report that a C-terminally truncated PMA2, which remains fully active, fails to promote H+-elicited TORC1 activation. Activation is also impaired when binding of PMA2 to 14-3-3 s is hindered. Our results show that at least some plant plasma-membrane H+-ATPases share with yeast Pma1 the ability to promote TORC1 activation in yeast upon H+-coupled nutrient uptake.


Asunto(s)
Proteínas Fúngicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Levaduras/metabolismo , Activación Enzimática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA