Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Proc Natl Acad Sci U S A ; 107(10): 4782-7, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20176943

RESUMEN

The ability of plants to adapt to changing light conditions depends on a protein kinase network in the chloroplast that leads to the reversible phosphorylation of key proteins in the photosynthetic membrane. Phosphorylation regulates, in a process called state transition, a profound reorganization of the electron transfer chain and remodeling of the thylakoid membranes. Phosphorylation governs the association of the mobile part of the light-harvesting antenna LHCII with either photosystem I or photosystem II. Recent work has identified the redox-regulated protein kinase STN7 as a major actor in state transitions, but the nature of the corresponding phosphatases remained unknown. Here we identify a phosphatase of Arabidopsis thaliana, called PPH1, which is specifically required for the dephosphorylation of light-harvesting complex II (LHCII). We show that this single phosphatase is largely responsible for the dephosphorylation of Lhcb1 and Lhcb2 but not of the photosystem II core proteins. PPH1, which belongs to the family of monomeric PP2C type phosphatases, is a chloroplast protein and is mainly associated with the stroma lamellae of the thylakoid membranes. We demonstrate that loss of PPH1 leads to an increase in the antenna size of photosystem I and to a strong impairment of state transitions. Thus phosphorylation and dephosphorylation of LHCII appear to be specifically mediated by the kinase/phosphatase pair STN7 and PPH1. These two proteins emerge as key players in the adaptation of the photosynthetic apparatus to changes in light quality and quantity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Electrón , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Microscopía Confocal , Mutación , Fosfoproteínas Fosfatasas/clasificación , Fosfoproteínas Fosfatasas/genética , Fosforilación , Complejo de Proteína del Fotosistema II/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Fluorescencia , Tilacoides/metabolismo
3.
Biochim Biophys Acta ; 1803(6): 715-23, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20226817

RESUMEN

Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.


Asunto(s)
Cloroplastos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Citosol/metabolismo , Eucariontes/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Pisum sativum/metabolismo , Fosforilación , Fenómenos Fisiológicos de las Plantas , Estructura Terciaria de Proteína , Transporte de Proteínas
4.
Plant Physiol ; 153(3): 1016-30, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20457805

RESUMEN

The translocon at the outer membrane of the chloroplast assists the import of a large class of preproteins with amino-terminal transit sequences. The preprotein receptors Toc159 and Toc33 in Arabidopsis (Arabidopsis thaliana) are specific for the accumulation of abundant photosynthetic proteins. The receptors are homologous GTPases known to be regulated by phosphorylation within their GTP-binding domains. In addition to the central GTP-binding domain, Toc159 has an acidic N-terminal domain (A-domain) and a C-terminal membrane-anchoring domain (M-domain). The A-domain of Toc159 is dispensable for its in vivo activity in Arabidopsis and prone to degradation in pea (Pisum sativum). Therefore, it has been suggested to have a regulatory function. Here, we show that in Arabidopsis, the A-domain is not simply degraded but that it accumulates as a soluble, phosphorylated protein separated from Toc159. However, the physiological relevance of this process is unclear. The data show that the A-domain of Toc159 as well as those of its homologs Toc132 and Toc120 are targets of a casein kinase 2-like activity.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Quinasa de la Caseína II/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cromatografía de Afinidad , Heparina/farmacología , Datos de Secuencia Molecular , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
5.
Plant J ; 56(4): 590-602, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18657233

RESUMEN

RNA editing changes the sequence of many transcripts in plant organelles, but little is known about the molecular mechanisms determining the specificity of the process. In this study, we have characterized CLB19 (also known as PDE247), a gene that is required for editing of two distinct chloroplast transcripts, rpoA and clpP. Loss-of-function clb19 mutants present a yellow phenotype with impaired chloroplast development and early seedling lethality under greenhouse conditions. Transcript patterns are profoundly affected in the mutant plants, with a pattern entirely consistent with a defect in activity of the plastid-encoded RNA polymerase. CLB19 encodes a pentatricopeptide repeat protein similar to the editing specificity factors CRR4 and CRR21, but, unlike them, is implicated in editing of two target sites.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/genética , Edición de ARN , ARN del Cloroplasto/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Fenotipo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética
6.
Mol Biol Evol ; 25(6): 1120-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18343892

RESUMEN

Pentatricopeptide repeat (PPR) proteins form a huge family in plants (450 members in Arabidopsis and 477 in rice) defined by tandem repetitions of characteristic sequence motifs. Some of these proteins have been shown to play a role in posttranscriptional processes within organelles, and they are thought to be sequence-specific RNA-binding proteins. The origins of this family are obscure as they are lacking from almost all prokaryotes, and the spectacular expansion of the family in land plants is equally enigmatic. In this study, we investigate the growth of the family in plants by undertaking a genome-wide identification and comparison of the PPR genes of 3 organisms: the flowering plants Arabidopsis thaliana and Oryza sativa and the moss Physcomitrella patens. A large majority of the PPR genes in each of the flowering plants are intron less. In contrast, most of the 103 PPR genes in Physcomitrella are intron rich. A phylogenetic comparison of the PPR genes in all 3 species shows similarities between the intron-rich PPR genes in Physcomitrella and the few intron-rich PPR genes in higher plants. Intron-poor PPR genes in all 3 species also display a bias toward a position of their introns at their 5' ends. These results provide compelling evidence that one or more waves of retrotransposition were responsible for the expansion of the PPR gene family in flowering plants. The differing numbers of PPR proteins are highly correlated with differences in organellar RNA editing between the 3 species.


Asunto(s)
Arabidopsis/genética , Bryopsida/genética , Evolución Molecular , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sphagnopsida/genética , Secuencias de Aminoácidos , Duplicación de Gen , Variación Genética , Genoma de Planta , Genómica , Filogenia , Proteínas de Plantas/clasificación , Retroelementos
7.
Bioorg Med Chem Lett ; 18(19): 5316-9, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18774291

RESUMEN

An initial SAR study on a series of apamin-displacing 2-aminothiazole K(Ca)2 channel blockers is described. Potent inhibitors such as N-(4-methylpyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (13) are disclosed, and for select members of the series, the relationship between the observed activity in a thallium flux, a binding and a whole-cell electrophysiology assay is presented.


Asunto(s)
Apamina/farmacología , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/farmacología , Piridinas/síntesis química , Piridinas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Tiazoles/síntesis química , Tiazoles/farmacología , Técnicas Químicas Combinatorias , Estructura Molecular , Bloqueadores de los Canales de Potasio/química , Piridinas/química , Relación Estructura-Actividad , Tiazoles/química
8.
Bioorg Med Chem Lett ; 18(20): 5694-7, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18824351

RESUMEN

An exploratory SAR study on a series of potent, non-apamin-displacing 4-(aminomethylaryl)pyrazolopyrimidine K(Ca) channel blockers is described and their selectivity against K(Ca) channel subtypes is reported. The most potent analog, 5-chloro-N-(thiophen-2-ylmethyl)pyrazolo[1,5-a]pyrimidin-7-amine (24) displayed sub-micromolar activity in both a thallium flux and whole-cell electrophysiology assay and did not displace apamin in a competitive binding study.


Asunto(s)
Apamina/química , Bloqueadores de los Canales de Potasio/química , Pirazoles/síntesis química , Pirimidinas/síntesis química , Unión Competitiva , Línea Celular , Electrofisiología , Humanos , Concentración 50 Inhibidora , Modelos Químicos , Canales de Potasio Calcio-Activados/metabolismo , Isoformas de Proteínas , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad , Talio/química
9.
Methods Mol Biol ; 775: 31-49, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21863437

RESUMEN

Since its first description in 1998 (Rigaut et al., Nat Biotech 17:1030-1032, 1999), the TAP method, for Tandem Affinity Purification, has become one of the most popular methods for the purification of in vivo protein complexes and the identification of their composition by subsequent mass spectrometry analysis. The TAP method is based on the use of a tripartite tag fused to a target protein expressed in the organism of interest. A TAP tag has two independent binding regions separated by a protease cleavage site, and therefore allows two successive affinity purification steps. The most common TAP tag consists of two IgG binding repeats of Protein A from Staphylococcus aureus (ProtA) separated from a calmodulin-binding peptide by a Tobacco Etch Virus (TEV) protease cleavage site. Using the TAP method, native protein complexes can be purified efficiently with a reduced contaminant background when compared to single step purification methods. Initially developed in the yeast model system, the TAP method has been adapted to most common model organisms. The first report of the purification of protein complexes from plant tissue by the TAP method was published in 2004 by Rohila et al. (Plant J 38:172-181, 2004). The synthetic TAP tag gene described in this study has been optimized for use in plants, and since then, has been successfully used from single gene analyses to high-throughput studies of whole protein families (Rohila et al., PLoS ONE 4:e6685, 2009). Here, we describe a TAP tag purification method for the purification of protein complexes from total Arabidopsis extracts, that we employed successfully using a TAP-tagged chloroplast outer envelope protein.


Asunto(s)
Arabidopsis/citología , Proteínas de Cloroplastos/aislamiento & purificación , Cromatografía de Afinidad/métodos , Animales , Arabidopsis/crecimiento & desarrollo , Precipitación Química , Cloroformo/química , Proteínas de Cloroplastos/análisis , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Técnicas de Cultivo , Endopeptidasas/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Metanol/química , Microesferas , Compuestos Organometálicos/química , Sefarosa/química , Tripsina/metabolismo
10.
Plant Cell ; 19(10): 3256-65, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17965268

RESUMEN

The mitochondrial NADH:ubiquinone oxidoreductase complex (Complex I) is a large protein complex formed from both nuclearly and mitochondrially encoded subunits. Subunit ND1 is encoded by a mitochondrial gene comprising five exons, and the mature transcript requires four RNA splicing events, two of which involve trans-splicing independently transcribed RNAs. We have identified a nuclear gene (OTP43) absolutely required for trans-splicing of intron 1 (and only intron 1) of Arabidopsis thaliana nad1 transcripts. This gene encodes a previously uncharacterized pentatricopeptide repeat protein. Mutant Arabidopsis plants with a disrupted OTP43 gene do not present detectable mitochondrial Complex I activity and show severe defects in seed development, germination, and to a lesser extent in plant growth. The alternative respiratory pathway involving alternative oxidase is significantly induced in the mutant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Emparejamiento Base/genética , ADN Bacteriano/genética , Complejo I de Transporte de Electrón/metabolismo , Electroforesis en Gel de Poliacrilamida , Exones/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Immunoblotting , Intrones , Espectrometría de Masas , Proteínas Mitocondriales/metabolismo , Modelos Genéticos , Mutación , Fenotipo , Edición de ARN/genética , Empalme del ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Plant Cell ; 18(12): 3548-63, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17189341

RESUMEN

Plant mitochondrial genomes exist in a natural state of heteroplasmy, in which substoichiometric levels of alternative mitochondrial DNA (mtDNA) molecules coexist with the main genome. These subgenomes either replicate autonomously or are created by infrequent recombination events. We found that Arabidopsis thaliana OSB1 (for Organellar Single-stranded DNA Binding protein1) is required for correct stoichiometric mtDNA transmission. OSB1 is part of a family of plant-specific DNA binding proteins that are characterized by a novel motif that is required for single-stranded DNA binding. The OSB1 protein is targeted to mitochondria, and promoter-beta-glucuronidase fusion showed that the gene is expressed in budding lateral roots, mature pollen, and the embryo sac of unfertilized ovules. OSB1 T-DNA insertion mutants accumulate mtDNA homologous recombination products and develop phenotypes of leaf variegation and distortion. The mtDNA rearrangements occur in two steps: first, homozygous mutants accumulate subgenomic levels of homologous recombination products; second, in subsequent generations, one of the recombination products becomes predominant. After the second step, the process is no longer reversible by backcrossing. Thus, OSB1 participates in controlling the stoichiometry of alternative mtDNA forms generated by recombination. This regulation could take place in gametophytic tissues to ensure the transmission of a functional mitochondrial genome.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Genes de Plantas , Células Germinativas/citología , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/aislamiento & purificación , ATPasas de Translocación de Protón Mitocondriales/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Raíces de Plantas/citología , Unión Proteica , Transporte de Proteínas , Recombinación Genética/genética , Solanum tuberosum
12.
J Comb Chem ; 8(5): 664-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16961404

RESUMEN

The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.


Asunto(s)
Técnicas Químicas Combinatorias , Diseño de Fármacos
13.
Bioorg Med Chem Lett ; 13(17): 2883-5, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-14611849

RESUMEN

The synthesis of novel ligands for the NPY(2) receptor using solid phase split pool methodology is described. One of the analogues, diamine 16, was found to be a potent NPY(2) binder.


Asunto(s)
Diaminas/metabolismo , Receptores de Neuropéptido Y/metabolismo , Acilación , Línea Celular Tumoral , Diaminas/síntesis química , Humanos , Concentración 50 Inhibidora , Ligandos , Neuroblastoma/metabolismo , Ensayo de Unión Radioligante , Relación Estructura-Actividad
14.
Plant Cell ; 16(8): 2089-103, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15269332

RESUMEN

The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta , Orgánulos/fisiología , Secuencias Repetidas en Tándem , Secuencias de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/metabolismo , Biología Computacional , ADN Bacteriano/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA