Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Environ Res ; 219: 115071, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36528046

RESUMEN

To remove harmful volatile organic compounds (VOCs) including 2-butanone (methyl ethyl ketone, MEK) emitted from various industrial plants is very important for the clean air. Also, it is worthwhile to recycle porous spent fluid catalytic cracking (SFCC) catalysts from various petroleum refineries in terms of reducing industrial waste and the reuse of discharged resources. Therefore, Mn and Mn-Cu added SFCC (Mn/SFCC and Mn-Cu/SFCC) catalysts were prepared to compare their catalytic efficiencies together with the SFCC catalyst in the ozonation of 2-butanone. Since the SFCC-based catalysts have a structure similar to that of zeolite Y (Y), the Mn-loaded zeolite Y catalyst (Mn/Y) was also prepared to compare its activity for the removal of 2-butanone and ozone to that of the SFCC-based ones at room temperature. Among the five catalysts of this study (Y, Mn/Y, SFCC, Mn/SFCC, and Mn-Cu/SFCC), the Mn-Cu/SFCC and Mn/SFCC catalysts showed the better catalytic decomposition activity than the others. The increased distributions of the Mn3+ species and the Ovacancy sites in Mn/SFCC and Mn-Cu/SFCC catalysts which could supply more available active sites for the 2-butanone and ozone removal would enhance the catalytic activity of them.


Asunto(s)
Ozono , Zeolitas , Ozono/química , Porosidad , Catálisis
2.
Environ Res ; 213: 113599, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679906

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Carbón Orgánico/química , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Contaminantes del Suelo/análisis
3.
Environ Res ; 214(Pt 1): 113690, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35718164

RESUMEN

Nitrogen-containing contaminants, such as 4-nitrophenol (4-NP), cause detrimental effects when discharged into the environment and thus should be reduced or removed from ecosystems. In this study, an Ag-loaded TiO2-SiO2-Fe3O4 (TSF) with a core-shell structure was employed for the photo-assisted reduction of 4-NP. Fe3O4, SiO2, and TiO2 in the core-shell structure served as a magnetic center, protective layer, and light absorber, respectively. To improve the reduction activity of 4-NP, Ag was loaded onto TSF under stirring, with a variation of the temperature (2-130 °C) and reaction time (1, 2, and 4 h). Under the optimized conditions, 5Ag-TSF (with 5 wt% of Ag) could promote the reduction of aqueous 4-NP solution (2 × 10-4 M, 75 mL) in the presence of NaBH4 (0.1 M, 5 mL) under irradiation by a metal halide lamp, affording over 98% reduction within 5 min and a rate constant of 0.185 min-1, demonstrating its promising activity. Moreover, due to the advantages of the core-shell structure, the magnetic properties of Fe3O4 were sufficient to enable facile recycling of the sample for further reaction; SiO2 could protect the Fe3O4 center from oxidation or reduction; TiO2 enabled Ag accommodation and absorbed light to generate electron-hole pairs. In summary, an Ag-loaded TiO2-SiO2-Fe3O4 sphere with high activity and recyclability for 4-NP reduction was prepared via a facile and simple stirring method, where the sample can be used as a promising material in environmental remediation.


Asunto(s)
Ecosistema , Dióxido de Silicio , Catálisis , Nitrofenoles , Titanio
4.
Environ Res ; 215(Pt 1): 114016, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35977586

RESUMEN

Biochar is a carbon-neutral solid fuel and has emerged as a potential candidate to replace coal. Meanwhile, spent coffee grounds (SCGs) are an abundant and promising biomass waste that could be used for biochar production. This study develops a biochar valorization strategy by mixing SCGs with hydrogen peroxide (H2O2) at a weight ratio of 1:0.75 to upgrade SCG biochar. In this dual pretreatment method, the H2O2 oxidative ability at a pretreatment temperature of 105 °C contributes to an increase in the higher heating value (HHV) and carbon content of the SCG biochars. The HHV and carbon content of biochar increase by about 6.5% and 7.8%, respectively, when compared to the unpretreated one under the same conditions. Maximized biochar's HHV derived via the Taguchi method is 30.33 MJkg-1, a 46.9% increase compared to the raw SCG, and a 6.5% increase compared to the unpretreated SCG biochar. The H2O2 concentration is 18% for the maximized HHV. A quantitative identification index of intensity of difference (IOD) is adopted to evaluate the contributive level of H2O2 pretreatment in terms of the HHV and carbon content. IOD increases with increasing H2O2 pretreatment temperature. Before torrefaction, SCGs' IOD pretreated at 50 °C is 1.94%, while that pretreated at 105 °C is 8.06%. This is because, before torrefaction, H2O2 pretreatment sufficiently weakens SCGs' molecular structure, resulting in a higher IOD value. The IOD value of torrefied SCGs (TSCG) pretreated at 105 °C is 10.71%, accounting for a 4.59% increase compared to that pretreated at 50 °C. This implies that TSCG pretreated by H2O2 at 105 °C has better thermal stability. For every 1% increase in IOD of TSCG, the carbon content of the biochar increases 0.726%, and the HHV increases 0.529%. Overall, it is demonstrated that H2O2 is a green and promising pretreatment additive for upgrading SCG biochar's calorific value, and torrefied SCGs can be used as a potential solid fuel to approach carbon neutrality.


Asunto(s)
Café , Peróxido de Hidrógeno , Biomasa , Carbono , Carbón Orgánico , Carbón Mineral
5.
Environ Res ; 197: 111008, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33737077

RESUMEN

In the present study, carbon-dots (CDs) were derived from the thermal oxidation of an agricultural waste, bitter tea residue, to obtain different sp2/sp3 ratios and electronic structures for metal sensing. The CDs obtained from calcination at 700 °C exhibited the highest photoluminescence (PL) quantum yield (QY) of 11.8% among all the samples treated at different temperatures. These CDs had a high degree of graphitization, which resulted in a strong π-π* electron transition, and hence in a high QY. The strong photoluminescence of the CDs could be used to sense the metal ions Ag+, Sr2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Sn2+ by monitoring their PL intensity at an excitation wavelength of 320 nm. The metals inhibited the PL intensity in the order Ag+ > Fe2+, Fe3+, Ni2+ > Sr2+, Co2+, Cu2+, Sn2+, which demonstrated that the CDs exhibited high metal ion detection capability and selectivity. The detection of Fe3+ using CDs was performed in the range of 10-100 ppm with a LOD (limit of detection) value of 0.380 ppm. Theoretical calculations demonstrated that Ag+, Sr2+, and Sn2+ induced charge transfer excitation and that Fe2+ and Ni2+ induced d-d transitions via complexation with the sp2 clusters. The charge transfer excitation and d-d transitions hindered the π-π* transition of the sp2 clusters, leading to a quenching effect. On the other hand, Li+, Na+, and K+ ions did not alter the π-π* transition of the sp2 clusters, resulting in a negligible quenching effect. In summary, the oxidation level and electronic structure of CDs derived from bitter tea residue could be tailored, and the CDs were shown to be a facile, sustainable, and eco-friendly material for metal sensing.


Asunto(s)
Carbono , Puntos Cuánticos , Iones , Metales , Espectrometría de Fluorescencia
6.
Environ Res ; 200: 111757, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34303678

RESUMEN

Polychlorinated biphenyls (PCBs) are hazardous organic contaminants threatening human health and environmental safety due to their toxicity and carcinogenicity. Biochar (BC) is an eco-friendly carbonaceous material that can extensively be utilized for the remediation of PCBs-contaminated soils. In the last decade, many studies reported that BC is beneficial for soil quality enhancement and agricultural productivity based on its physicochemical characteristics. In this review, the potential of BC application in PCBs-contaminated soils is elaborated as biological strategies (e.g., bioremediation and phytoremediation) and specific mechanisms are also comprehensively demonstrated. Further, the synergy effects of BC application on PCBs-contaminated soils are discussed, in view of eco-friendly, beneficial, and productive aspects.


Asunto(s)
Bifenilos Policlorados , Contaminantes del Suelo , Biodegradación Ambiental , Carbón Orgánico , Bifenilos Policlorados/análisis , Suelo , Contaminantes del Suelo/análisis
7.
Energy (Oxf) ; 230: 120876, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994654

RESUMEN

In this study, co-pyrolysis of single-use face mask (for the protection against COVID-19) and food waste was investigated for the purpose of energy and resource valorization of the waste materials. To this end, disposable face mask (a piece of personal protective equipment) was pyrolyzed to produce fuel-range chemicals. The pyrolytic gas evolved from the pyrolysis of the single-use face mask consisted primarily of non-condensable permanent hydrocarbons such as CH4, C2H4, C2H6, C3H6, and C3H8. An increase in pyrolysis temperature enhanced the non-condensable hydrocarbon yields. The pyrolytic gas had a HHV of >40 MJ kg-1. In addition, hydrocarbons with wider carbon number ranges (e.g., gasoline-, jet fuel-, diesel-, and motor oil-range hydrocarbons) were produced in the pyrolysis of the disposable face mask. The yields of the gasoline-, jet fuel-, and diesel-range hydrocarbons obtained from the single-use mask were highest at 973 K. The pyrolysis of the single-use face mask yielded 14.7 wt% gasoline-, 18.4 wt% jet fuel-, 34.1 wt% diesel-, and 18.1 wt% motor oil-range hydrocarbons. No solid char was produced via the pyrolysis of the disposable face mask. The addition of food waste to the pyrolysis feedstock led to the formation of char, but the presence of the single-use face mask did not affect the properties and energy content of the char. More H2 and less hydrocarbons were produced by co-feeding food waste in the pyrolysis of the disposable face mask. The results of this study can contribute to thermochemical management and utilization of everyday waste as a source of energy.

8.
J Environ Manage ; 227: 329-334, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30199729

RESUMEN

A methodology for the synthesis of gasoline-range fuels from carbon neutral resources is introduced. Sorbitol, a sugar-based compound, was employed as a raw material because the compound is readily obtained from cellulose. Gasoline-range hydrocarbons were produced via hydrodeoxygenation (HDO) on zirconium phosphate-supported Pd-bimetallic (Pt-Pd, Ru-Pd, Ni-Pd, Fe-Pd, Co-Pd, W-Pd) catalysts. Among the tested catalysts, the bimetallic W-Pd/ZrP catalyst exhibited the highest yield of gasoline products, peaking at ∼70%. However, with the bimetallic Fe-Pd and Co-Pd catalysts, high-octane gasoline products were made (research octane number (RON) of the products was higher than 100). The Fe-Pd catalyst also showed the highest initial activity for the HDO of sorbitol. This study demonstrates that HDO in the Pd-system is a promising option to produce high-quality gasoline-range hydrocarbons from lignocellulosic biomass.


Asunto(s)
Gasolina , Paladio , Catálisis , Octanos , Sorbitol
9.
Water Environ Res ; 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600861

RESUMEN

Adsorbents reported to remove a toxic acidic azo dye, Amaranth (AMR) are very limited, and their typical adsorption capacities are quite low. Recently, a zeolitic imidazolate framework (ZIF-67) has been proposed as a novel adsorbent as ZIF-67 possesses high surface area, superior chemical stability in water and positive charges, making it a promising adsorbent for AMR. Nevertheless, no studies have been conducted to investigate the adsorption of AMR to ZIF-67. Herein, ZIF-67 is employed for the first time to remove AMR from water via adsorption. Adsorption behaviors are investigated via determining the adsorption kinetics and isotherm. ZIF-67 also exhibits a significant higher maximum adsorption capacity (qmax = 121 mg g-1 at 30 °C) than most of the reported adsorbents. ZIF-67 can be also regenerated by washing it with NaCl solutions and the regeneration efficiency remains effective over multiple cycles, demonstrating that ZIF-67 is a promising adsorbent for AMR.

10.
Chemosphere ; 350: 141121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185423

RESUMEN

The use of lignocellulosic waste as an energy source for substituting fossil fuels has attracted lots of attention, and pyrolysis has been established as an effective technology for this purpose. However, the utilization of bio-oil derived from non-catalytic pyrolysis faces certain constraints, making it impractical for direct application in advanced sectors. This study has focused on overcoming these challenges by employing fractional condensation of pyrolytic vapors at distinct temperatures. The potential of five types of sawdust for producing high-quality bio-oil through pyrolysis conducted with a bench-scale bubbling fluidized bed reactor was investigated for the first time. The highest yield of bio-oil (61.94 wt%) was produced using sample 3 (damaged timber). Remarkably, phenolic compounds were majorly gathered in the 1st and 2nd condensers at temperatures of 200 °C and 150 °C, respectively, attributing to their higher boiling points. Whereas, carboxylic acid, ketones, and furans were mainly collected in the 3rd (-5 °C) and 4th (-20 °C) condensers, having high water content in the range of 35.33%-65.09%. The separation of acidic nature compounds such as acetic acid in the 3rd and 4th was evidenced by its low pH in the range of 4-5, while the pH of liquid collected in the 1st and 2nd condensers exhibited higher pH (6-7). The well-separated bio-oil derived from biomass pyrolysis facilitates its wide usage in various applications, proposing a unique approach toward carbon neutrality. In particular, achieving efficient separation of phenolic compounds in bio-oil is important, as these compounds can undergo further upgrading to generate hydrocarbons and diesel fuel.


Asunto(s)
Calor , Polifenoles , Pirólisis , Biocombustibles , Aceites de Plantas , Fenoles/análisis , Biomasa
11.
Chemosphere ; 313: 137582, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529175

RESUMEN

Microplastics (MPs) have emerged as a global concern, with a recent study being the first to detect them in the bloodstream of healthy people. However, precise information regarding the toxic effects of MPs on the human vascular system is currently lacking. In this study, we used human vascular endothelial EA. hy926 cells to examine the toxic potential of polystyrene MPs (PSMPs) under realistic blood concentrations. Our findings indicated that PSMPs can cause oxidative stress by reducing the expression of antioxidants, thereby leading to apoptotic cytotoxicity in EA. hy926 cells. Furthermore, the protective potential of heat shock proteins can be reduced by PSMPs. PSMP-induced apoptosis might also lower the expression of rho-associated protein kinase-1 and nuclear factor-κB expression, thus dampening LRR- and pyrin domain-containing protein 3 in EA. hy926 cells. Moreover, we observed that PSMPs induce vascular barrier dysfunction via the depletion of zonula occludens-1 protein. However, although protein expression of the nuclear hormone receptor 77 was inhibited, no significant increase in ectin-like oxidized low-density lipoprotein receptor-1 was noted in PSMP-treated EA. hy926 cells. These results demonstrate that exposure to PSMPs may not sufficiently increase the risk of developing atherosclerosis. Overall, our research signifies that exposure to realistic blood concentrations of PSMPs is associated with low atherosclerotic cardiovascular risk in humans.


Asunto(s)
Microplásticos , Poliestirenos , Humanos , Microplásticos/toxicidad , Microplásticos/metabolismo , Poliestirenos/metabolismo , Plásticos/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo
12.
J Colloid Interface Sci ; 652(Pt A): 1028-1042, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639925

RESUMEN

While transition metals are useful for activating monopersulfate (MPS) to degrade contaminants, bimetallic alloys exhibit stronger catalytic activities owing to several favorable effects. Therefore, even though Co is an efficient metal for MPS activation, CoFe alloys are even more promising heterogeneous catalysts for MPS activation. Immobilization/embedment of CoFe alloy nanoparticles (NPs) onto hetero-atom-doped carbon matrices appears as a practical strategy for evenly dispersing CoFe NPs and enhancing catalytic activities via interfacial synergies between CoFe and carbon. Herein, N-doped carbon-embedded CoFe alloy (NCCF) is fabricated here to exhibit a unique hollow-engineered nanostructure and the composition of CoFe alloy by using Co-ZIF as a precursor after the facile etching and Fe doping. The Fe dopant embeds CoFe alloy NPs into the hollow-structured N-doped carbon substrate, enabling NCCF to possess the higher mesoscale porosity, active N species as well as more superior electrochemical properties than its analogue without Fe dopants, carbon matrix-supported cobalt (NCCo). Thus, NCCF exhibits a considerably larger activity than NCCo and the benchmark catalyst, Co3O4 NP, for MPS activation to degrade an environmental hormone, dihydroxydiphenyl ketone (DHPK). Besides, NCCF + MPS shows an even lower activation energy for DHPK degradation than literatures, and retains its high efficiency for eliminating DHPK in different water media. DHPK degradation pathway and ecotoxicity assessment are unraveled based on the insights from the computational chemistry, demonstrating that DHPK degradation by NCCF + MPS did not result in the formation of toxic and highly toxic by-products. These features make NCCF a promising heterogeneous catalyst for MPS activation to degrade DHPK.

13.
Chemosphere ; 313: 137309, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574575

RESUMEN

While Azorubin S (AZRS) is extensively used as a reddish anionic azo dye for textiles and an alimentary colorant in food, AZRS is mutagenic/carcinogenic, and it shall be removed from dye-containing wastewaters. In view of advantages of SO4•--related chemical oxidation technology, oxone (KHSO5) would an ideal source of SO4•- for degrading AZRS, and heterogeneous Co3O4-based catalysts is required and shall be developed for activating oxone. Herein, a facile protocol is proposed for fabricating mesoporous silica (MS)-confined Co3O4 by a templating agent-mediated dry-grinding procedure. As the templating agent retained inside the ordered pores of MS (before calcination) would facilitate insertion and dispersion of Co ions into pores, the resulting Co3O4 nanoparticles (NPs) would be grown and confined within the pores of MS after calcination, affording Co@MS. On the contrary, another analogue, Co/MS, is also prepared using the similar protocol without the templating agent-mediated introduction of Co, but Co3O4 NPs seriously aggregate as clusters on MS. Therefore, Co@MS outperforms Co/MS for activating oxone to eliminate AZRS. Co@MS shows a noticeably lower activation energy of AZRS elimination than the existing catalysts, revealing its advantage over the reported catalysts. Moreover, the mechanistic investigation of AZRS elimination by Co@MS-activated oxone has been also elucidated for identifying the presence of SO4•‒, •OH, and 1O2 in AZRS degradation using scavengers, electron paramagnetic resonance spectroscopy, and semi-quantification. The AZRS decomposition pathway is also investigated and unveiled in details via the DFT calculation. These results validate that Co@MS appears as a superior catalyst of oxone activation for AZRS degradation.


Asunto(s)
Dióxido de Silicio , Agua , Agua/química , Compuestos Azo , Cobalto/química
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120963, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144079

RESUMEN

In this study, we prepared nitrogen-doped carbon dots (xNCDs) using hydrothermally-treated bitter tea oil residue with urea for the detection of metal ions by monitoring the photoluminescence quenching. The quantum yields of the xNCDs increased from approximately 3.85% (CDs) to 5.5% (3NCDs) and 7.2% (1NCDs), revealing that nitrogen doping effectively increases the fluorescence emission. The increased emission of the xNCDs can be attributed to radiative recombination resulting from the π-π* transition of the C=C or the n-π* transition between the C=O or N=O of sp3 units. Moreover, the CDs have abundant surface-attached phenolic and hydroxyl groups that coordinate with Fe3+ ions and quench the fluorescence. Conversely, Hg2+ ions preferentially adsorb on nitrogen-containing groups, such as amide-carbonyl groups (O=C-NH2) and pyridinic and pyrrolic functionalities, on the surface of the NCDs owing to their strong affinity, quenching the substantial photoluminescence emissions. Our results suggest that bitter tea oil residue-derived carbon dots can be used to selectively detect metal ions, such as Fe3+ and Hg2+, by doping with nitrogen using urea as a nitrogen precursor.


Asunto(s)
Mercurio , Puntos Cuánticos , Carbono/química , Iones , Mercurio/análisis , Nitrógeno/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia , , Urea
15.
Bioresour Technol ; 343: 126125, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34653623

RESUMEN

This study is aimed to comprehend the treatment of non-submerged attached growth systems using bio-sponge, bio-cord, and bio-cloth media. Three reactors were set up with internal recirculation ratio of 1 (IR = 1) and similar media surface area. Bio-sponge and bio-cloth reactors showed removal of COD (79 vs. 76%) and NH4+-N (78 vs. 73%). While bio-cord treatment was deteriorated due to time-dependent process. Multiple linear regression revealed that alkalinity governed the formation degree of the anaerobic zone in bio-sponges, partially affecting nitrification. Increasing IR from 1 to 3 caused sloughing of the attached biomass and was positively correlated with effluent nitrite nitrogen concentration, indicating the sensitivity of nitrification to spatial distribution effects. In addition, bio-sponge system obtained superior performance at IR of 2 while bio-cloth one might be also an effective media for wastewater treatment if having good durability.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Reactores Biológicos , Nitrificación , Nitrógeno/análisis
16.
Chemosphere ; 287(Pt 2): 132224, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826918

RESUMEN

Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.


Asunto(s)
Eliminación de Residuos , Vapor , Biomasa , Alimentos , Hidrógeno , Óxido de Magnesio , Óxidos
17.
Environ Pollut ; 312: 119920, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977635

RESUMEN

This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen-temperature programmed reduction experiments were conducted to analyze the catalyst properties. The specific area and formation of micropores of SDC were improved by applying KOH treatment. MnOx/SDC-K3 exhibited a higher toluene removal efficiency of 89.7% after 100 min than MnOx supported on activated carbon (MnOx/AC) with a removal efficiency of 6.6%. The higher (Oads (adsorbed oxygen)+Ov(vacancy oxygen))/OL (lattice oxygen) and Mn3+/Mn4+ ratios of MnOx/SDC-K3 than those of MnOx/AC seemed to be important for the catalytic oxidation of toluene.

18.
J Hazard Mater ; 413: 125325, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33601143

RESUMEN

The global population growth demands intensification of anthropogenic processes, thus leading to inter alia pollution of both land and aquatic environments with toxic organic compounds. Particularly harmful synthetic compounds are classified as persistent organic pollutants (POPs). Their relatively high chemical resistance resulted in a worldwide ban or strict control on the use of POPs. The majority of POPs were commonly used as pesticides, and unfortunately, some of them are still utilized as an aid in agricultural practices. Therefore, environmental monitoring in terms of reliable detection and quantification of pesticidal POPs is an ever-increasing need. Chemical sensors and adsorption materials crafted for specific pesticide operate on host-guest interactions should provide selectivity and sensitivity, thus leading to the detection of target molecule down to the nanomolar range. This could be achieved with materials exhibiting a very large active surface area, well-defined structure, and high stability. The novel materials studied in that context are metal-organic frameworks (MOFs). The structure of various MOFs can be functionalized to provide desired host-guest interactions. In this mini-review, we critically discuss the application of MOFs for the detection and adsorption of selected pesticides that are classified as POPs according to the Stockholm Convention.

19.
Chemosphere ; 267: 128906, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33243580

RESUMEN

As salicylic acid (SAL) is increasingly consumed as a pharmaceutical product, release of SAL into the environment poses threats to ecology because of its low bio-degradability. Thus, SO4•--based chemical oxidation processes have been proposed for degrading SAL. Since monopersulfate (MPS) represents a primary reagent for generating SO4•-, and Co is the most capable metal for activating MPS to generate SO4•-, C3O4 NPs are frequently proposed for activating MPS but they are difficult to recover from water. Thus CoFe2O4 is considered as a magnetic alternative to Co3O4, and loading of CoFe2O4 NPs on substrates could further improve dispersion and avoid aggregation of NPs. Therefore, this study proposes a 3-Dimensional (3D) hierarchical catalyst which is fabricated by loading CoFe2O4 NPs on nitrogen-doped carbon sponge (NCS). The NCS is not only adopted as a support for CoFe2O4 NPs but also provides additional catalytic sites and enhances catalytic activities of CoFe2O4 NPs for MPS activation. As a result, CoFe2O4 NPs loaded on NCS (CFNCS) exhibits substantially higher catalytic activities than CoFe2O4 NPs and NCS individually with 100% of SAL could be afforded within 30 min. Ea of SAL degradation of 47.4 kJ/mol by CFNCS-activated MPS is also lower than those by other reported catalysts, whereas the RSE was 11.1%, which was also much higher than most of reported values. These features demonstrate that CFNCS is a promising 3D catalyst for enhancing MPS activation to degrade SAL. The findings obtained here are also insightful to develop efficient MPS-activating catalysts for eliminating contaminants.


Asunto(s)
Carbono , Nanopartículas , Cobalto , Compuestos Férricos , Fenómenos Magnéticos , Nitrógeno , Ácido Salicílico
20.
Environ Pollut ; 273: 116528, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33486253

RESUMEN

HKUST-1 is currently studied for a very diverse range of applications. Despite its exciting potential, significant concerns remain regarding the safety of HKUST-1. Therefore, human embryonic kidney 293 (HEK293) cells were used to verify the renal toxicity of HKUST-1. In this study, HKUST-1 induced concentration-dependent cytotoxic effects in HEK293 cells. The depolarization of mitochondrial membrane potential and formation of apoptotic bodies and autophagic vesicles were observed in HKUST-1-treated HEK293 cells. Oxidative (oxidative stress and haem oxygenase-1 activation) and inflammatory responses (NF-κB and NLRP3 activation) in HEK293 cells were induced by HKUST-1 exposure. In addition, the observed reduction in NAD(P)H levels in HKUST-1-treated HEK293 cells may be attributable to PARP-1 activation following DNA single- and double-strand breaks. The HKUST-1-induced depletion of zonula occludens proteins in HEK293 cells might lead to altered renal barrier integrity. The variations of α1-antitrypsin, oxidised α1-antitrypsin and NLRP3 protein expression in HEK293 cells suggested that HKUST-1 increases the risk of chronic kidney diseases. However, most of these adverse effects were significantly induced only by high HKUST-1 concentration (100 µg/mL), which do not reflect the actual exposure. Thus, the toxic risk of HKUST-1 appears to be negligible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA