Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genes Dev ; 37(5-6): 218-242, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931659

RESUMEN

Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina , Cromatina , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(9): 3817-3826, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808767

RESUMEN

Midbrain dopamine neurons, which can be regulated by neuropeptides and hormones, play a fundamental role in controlling cognitive processes, reward mechanisms, and motor functions. The hormonal actions of insulin-like growth factor 1 (IGF-1) produced by the liver have been well described, but the role of neuronally derived IGF-1 remains largely unexplored. We discovered that dopamine neurons secrete IGF-1 from the cell bodies following depolarization, and that IGF-1 controls release of dopamine in the ventral midbrain. In addition, conditional deletion of dopamine neuron-derived IGF-1 in adult mice leads to decrease of dopamine content in the striatum and deficits in dopamine neuron firing and causes reduced spontaneous locomotion and impairments in explorative and learning behaviors. These data identify that dopamine neuron-derived IGF-1 acts as a regulator of dopamine neurons and regulates dopamine-mediated behaviors.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Locomoción/genética , Mesencéfalo/fisiología , Animales , Cognición/fisiología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/fisiología , Conducta Exploratoria/fisiología , Hormonas/metabolismo , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Aprendizaje/fisiología , Locomoción/fisiología , Mesencéfalo/metabolismo , Ratones , Neuropéptidos/genética
3.
Proc Natl Acad Sci U S A ; 113(30): E4387-96, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27407143

RESUMEN

The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas con Homeodominio LIM/genética , Mesencéfalo/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/genética , Animales , Supervivencia Celular/genética , Daño del ADN , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Proteínas con Homeodominio LIM/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Estrés Oxidativo , Agregación Patológica de Proteínas , Factores de Transcripción/deficiencia , alfa-Sinucleína/metabolismo
4.
J Neurosci ; 37(9): 2305-2316, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130357

RESUMEN

Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbrain dopaminergic neurons located in the ventral tegmental area that expresses the basic helix-loop-helix transcription factor, Neurogenic Differentiation Factor-6 (NEUROD6). Retrograde fluorogold tracing experiments demonstrate that Neurod6+ midbrain dopaminergic neurons neurons project to two distinct septal regions: the dorsal and intermediate region of the lateral septum. Loss-of-function studies in mice demonstrate that Neurod6 and the closely related family member Neurod1 are both specifically required for the survival of this lateral-septum projecting neuronal subset during development. Our findings underscore the complex organization of midbrain dopaminergic neurons and provide an entry point for future studies of the functions of the Neurod6+ subset of midbrain dopaminergic neurons.SIGNIFICANCE STATEMENT Midbrain dopaminergic neurons regulate diverse brain functions, including voluntary movement and cognitive and emotive behaviors. These neurons are heterogeneous, and distinct subsets are thought to regulate different behaviors. However, we currently lack the means to identify and modify gene function in specific subsets of midbrain dopaminergic neurons. In this study, we identify the transcription factor NEUROD6 as a specific marker for a novel subset of midbrain dopaminergic neurons in the ventral midbrain that project to the lateral septum, and we reveal essential roles for Neurod1 and Neurod6 in the survival of these neurons during development. Our findings highlight the molecular and anatomical heterogeneity of midbrain dopaminergic neurons and contribute to a better understanding of this functionally complex group of neurons.


Asunto(s)
Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neuronas Dopaminérgicas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Núcleos Septales/citología , Área Tegmental Ventral/citología , Aldehído Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biotina/análogos & derivados , Biotina/metabolismo , Calbindinas/metabolismo , Recuento de Células , Dextranos/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/fisiología , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Retinal-Deshidrogenasa , Núcleos Septales/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/embriología , Área Tegmental Ventral/crecimiento & desarrollo
5.
Development ; 142(7): 1315-24, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25804738

RESUMEN

Midbrain dopamine neuronal progenitors develop into heterogeneous subgroups of neurons, such as substantia nigra pars compacta, ventral tegmental area and retrorubal field, that regulate motor control, motivated and addictive behaviours. The development of midbrain dopamine neurons has been extensively studied, and these studies indicate that complex cross-regulatory interactions between extrinsic and intrinsic molecules regulate a precise temporal and spatial programme of neurogenesis in midbrain dopamine progenitors. To elucidate direct molecular interactions between multiple regulatory factors during neuronal differentiation in mice, we characterised genome-wide binding sites of the forkhead/winged helix transcription factor Foxa1, which functions redundantly with Foxa2 to regulate the differentiation of mDA neurons. Interestingly, our studies identified a rostral brain floor plate Neurog2 enhancer that requires direct input from Otx2, Foxa1, Foxa2 and an E-box transcription factor for its transcriptional activity. Furthermore, the chromatin remodelling factor Smarca1 was shown to function downstream of Foxa1 and Foxa2 to regulate differentiation from immature to mature midbrain dopaminergic neurons. Our genome-wide Foxa1-bound cis-regulatory sequences from ChIP-Seq and Foxa1/2 candidate target genes from RNA-Seq analyses of embryonic midbrain dopamine cells also provide an excellent resource for probing mechanistic insights into gene regulatory networks involved in the differentiation of midbrain dopamine neurons.


Asunto(s)
Diferenciación Celular/genética , Neuronas Dopaminérgicas/citología , Genoma , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Mesencéfalo/citología , Neuronas/citología , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión/genética , Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Motivos de Nucleótidos/genética , Factores de Transcripción Otx/metabolismo , Unión Proteica , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(35): E4929-38, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283356

RESUMEN

Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.


Asunto(s)
Dopamina/metabolismo , Conducta Alimentaria , Factor Nuclear 3-alfa del Hepatocito/fisiología , Factor Nuclear 3-beta del Hepatocito/fisiología , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Eliminación de Gen , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Ratones , Ratones Noqueados , Neuronas/citología , ARN Mensajero/genética
7.
Development ; 139(14): 2625-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22696295

RESUMEN

The transcription factors Foxa1 and Foxa2 promote the specification of midbrain dopaminergic (mDA) neurons and the floor plate. Whether their role is direct has remained unclear as they also regulate the expression of Shh, which has similar roles. We characterized the Foxa2 cis-regulatory network by chromatin immunoprecipitation followed by high-throughput sequencing of mDA progenitors. This identified 9160 high-quality Foxa2 binding sites associated with 5409 genes, providing mechanistic insights into Foxa2-mediated positive and negative regulatory events. Foxa2 regulates directly and positively key determinants of mDA neurons, including Lmx1a, Lmx1b, Msx1 and Ferd3l, while negatively inhibiting transcription factors expressed in ventrolateral midbrain such as Helt, Tle4, Otx1, Sox1 and Tal2. Furthermore, Foxa2 negatively regulates extrinsic and intrinsic components of the Shh signaling pathway, possibly by binding to the same enhancer regions of co-regulated genes as Gli1. Foxa2 also regulates the expression of floor plate factors that control axon trajectories around the midline of the embryo, thereby contributing to the axon guidance function of the floor plate. Finally, this study identified multiple Foxa2-regulated enhancers that are active in the floor plate of the midbrain or along the length of the embryo in mouse and chick. This work represents the first comprehensive characterization of Foxa2 targets in mDA progenitors and provides a framework for elaborating gene regulatory networks in a functionally important progenitor population.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Mesencéfalo/citología , Células Madre/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Inmunoprecipitación de Cromatina , Electroporación , Genotipo , Factor Nuclear 3-beta del Hepatocito/genética , Inmunohistoquímica , Hibridación in Situ , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Proteínas Represoras , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Neurosci ; 33(18): 8022-34, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637192

RESUMEN

The maintained expression of transcription factors throughout the development of mesodiencephalic dopaminergic (mDA) neurons suggests multiple roles at various stages in development. Two members of the forkhead/winged helix transcription factor family, Foxa1 and Foxa2, have been recently shown to have an important influence in the early development of mDA neurons. Here we present data demonstrating that these genes are also involved in the later maintenance of the mDA system. We conditionally removed both genes in postmitotic mDA neurons using the dopamine transporter-cre mouse. Deletion of both Foxa1 and Foxa2 resulted in a significant reduction in the number of tyrosine hydroxylase (TH)-positive mDA neurons. The decrease was predominantly observed in the substantia nigra region of the mDA system, which led to a loss of TH+ fibers innervating the striatum. Further analysis demonstrated that the reduction in the number of TH+ cells in the mutant mice was not due to apoptosis or cell-fate change. Using reporter mouse lines, we found that the mDA neurons were still present in the ventral midbrain, but that they had lost much of their dopaminergic phenotype. The majority of these neurons remained in the ventral mesencephalon until at least 18 months of age. Chromatin immunoprecipitation suggested that the loss of the mDA phenotype is due to a reduction in the binding of the nuclear orphan receptor, Nurr-1 to the promoter region of TH. These results extend previous findings and demonstrate a later role for Foxa genes in regulating the maintenance of dopaminergic phenotype in mDA neurons.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Mesencéfalo/citología , Análisis de Varianza , Animales , Proteínas Bacterianas/metabolismo , Muerte Celular/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Tamaño de la Célula , Inmunoprecipitación de Cromatina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Embrión de Mamíferos , Marcha/genética , Factor Nuclear 3-alfa del Hepatocito/deficiencia , Factor Nuclear 3-beta del Hepatocito/deficiencia , Etiquetado Corte-Fin in Situ , Proteínas Luminiscentes/metabolismo , Mesencéfalo/embriología , Ratones , Ratones Transgénicos , Mutación/genética , Fibras Nerviosas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica/genética , Proteínas/genética , Proteínas/metabolismo , ARN no Traducido , Tirosina 3-Monooxigenasa/metabolismo
9.
J Neurosci ; 31(35): 12413-25, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880902

RESUMEN

LIM homeodomain transcription factors, Lmx1a and Lmx1b, are required for the development of midbrain dopaminergic (mDA) neurons. Lmx1b is required for the specification and maintenance of mDA neurons, primarily due to its role in isthmic organizer development that is essential for the induction of mDA neurons. Here, we conditionally deleted Lmx1b in the ventral neural tube using ShhCre and found that Lmx1b conditional mutant mouse embryos show no defect in the development and maintenance of mDA neurons. In addition, Dreher (Lmx1a mutant) embryos display only a moderate reduction in the number of mDA neurons, suggesting that the related family member Lmx1b might compensate for Lmx1a function. We therefore generated Lmx1a and Lmx1b double mutants. Severe loss of mDA neurons occurred in Lmx1a(dr/dr);Shh(Cre/+);Lmx1b(f/f) double mutants due to essential roles for Lmx1a and Lmx1b in regulating the proliferation and neuronal commitment of mDA progenitors through the expression of Wnt1 and Ngn2, respectively. Lmx1a and Lmx1b also negatively regulate Hes1 expression and consequently cell cycle exit through activation of p27(Kip1) expression. In addition, Lmx1a and Lmx1b also regulate the expression of floor plate genes such as Corin and Slit2 and specification of postmitotic mDA neurons. These defects were more severe with decreasing gene dosage of Lmx1a and Lmx1b or observed only when all four copies of Lmx1a and Lmx1b genes were inactivated. Together, our results demonstrate that Lmx1a and Lmx1b function cooperatively to regulate proliferation, specification, and differentiation of mDA progenitors, including their floor plate-like properties.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular , Dopamina/metabolismo , Proteínas de Homeodominio/metabolismo , Mesencéfalo/citología , Células-Madre Neurales/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células , Ciclo Celular/genética , Diferenciación Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Técnicas In Vitro , Proteínas con Homeodominio LIM , Ratones , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Transducción de Señal/genética , Factor de Transcripción Brn-3A/metabolismo , Factores de Transcripción/genética
10.
Dev Biol ; 349(2): 406-16, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21074524

RESUMEN

The neuroendocrine hypothalamus regulates a spectrum of essential biological processes and underlies a range of diseases from growth failure to obesity. While the exploration of hypothalamic function has progressed well, knowledge of hypothalamic development is poor. In particular, very little is known about the processes underlying the genesis and specification of the neurons in the arcuate and ventromedial nuclei. Recent studies demonstrate that the proneural basic helix-loop-helix transcription factor Mash1 is required for neurogenesis and neuronal subtype specification in the ventral hypothalamus. We demonstrate here that Ngn3, another basic helix-loop-helix transcription factor, is expressed in mitotic progenitors in the arcuate and ventromedial hypothalamic regions of mouse embryos from embryonic days 9.5-17.5. Genetic fate mapping and loss of function studies in mice demonstrate that Ngn3+ progenitors contribute to subsets of POMC, NPY, TH and SF1 neurons and is required for the specification of these neuronal subtypes in the ventral hypothalamus. Interestingly, while Ngn3 promotes the development of arcuate POMC and ventromedial SF1 neurons, it inhibits the development of NPY and TH neurons in the arcuate nuclei. Given the opposing roles of POMC and NPY neurons in regulating food intake, these results indicate that Ngn3 plays a central role in the generation of neuronal populations controlling energy homeostasis in mice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Metabolismo Energético/genética , Inmunohistoquímica , Hibridación in Situ , Indoles , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo
11.
Nat Aging ; 2(6): 484-493, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-37034474

RESUMEN

Epigenetic clocks are mathematically derived age estimators that are based on combinations of methylation values that change with age at specific CpGs in the genome. These clocks are widely used to measure the age of tissues and cells1,2. The discrepancy between epigenetic age (EpiAge), as estimated by these clocks, and chronological age is referred to as EpiAge acceleration. Epidemiological studies have linked EpiAge acceleration to a wide variety of pathologies, health states, lifestyle, mental state and environmental factors2, indicating that epigenetic clocks tap into critical biological processes that are involved in aging. Despite the importance of this inference, the mechanisms underpinning these clocks remained largely uncharacterized and unelucidated. Here, using primary human cells, we set out to investigate whether epigenetic aging is the manifestation of one or more of the aging hallmarks previously identified3. We show that although epigenetic aging is distinct from cellular senescence, telomere attrition and genomic instability, it is associated with nutrient sensing, mitochondrial activity and stem cell composition.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Metilación de ADN/genética , Envejecimiento/genética , Senescencia Celular/genética , Epigenómica
12.
Nat Cell Biol ; 4(2): 170-4, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11802165

RESUMEN

Fibroblast growth factors (FGFs) are pleiotrophic growth factors that control cell proliferation, migration, differentiation and embryonic patterning. During early zebrafish embryonic development, FGFs regulate dorsoventral patterning by controlling ventral bone morphogenetic protein (BMP) expression. FGFs function by binding and activating high-affinity tyrosine kinase receptors. FGF activity is negatively regulated by members of the Sprouty family, which antagonize Ras signalling induced by receptor tyrosine kinases. On the basis of similarities in their expression patterns during embryonic development, we have identified five genes that define a synexpression group -- fgf8, fgf3, sprouty2, sprouty4, as well as a novel gene, sef (similar expression to fgf genes). Sef encodes a conserved putative transmembrane protein that shares sequence similarities with the intracellular domain of the interleukin 17 receptor. Here we show that in zebrafish, Sef functions as a feedback-induced antagonist of Ras/Raf/MEK/MAPK-mediated FGF signalling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/fisiología , Factores de Crecimiento de Fibroblastos/genética , Humanos , Hibridación in Situ , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas c-raf/metabolismo , Alineación de Secuencia , Pez Cebra , Proteínas de Pez Cebra/química
13.
Nat Neurosci ; 10(11): 1433-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17922007

RESUMEN

In many regions of the developing CNS, distinct cell types are born at different times. The means by which discrete and stereotyped temporal switches in cellular identities are acquired remains poorly understood. To address this, we have examined how visceral motor neurons (VMNs) and serotonergic neurons, two neuronal subtypes, are sequentially generated from a common progenitor pool in the vertebrate hindbrain. We found that the forkhead transcription factor Foxa2, acting in progenitors, is essential for the transition from VMN to serotonergic neurogenesis. Loss-of-function and gain-of-function experiments indicated that Foxa2 activates the switch through a temporal cross-repressive interaction with paired-like homeobox 2b (Phox2b), the VMN progenitor determinant. This mechanism bears a marked resemblance to the cross-repression between neighboring domains of transcription factors that establish discrete progenitor identities along the spatial axes. Moreover, the subsequent differentiation of central serotonergic neurons required both the suppression of VMN neurogenesis and the induction of downstream intrinsic determinants of serotonergic identity by Foxa2.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Serotonina/metabolismo , Células Madre/fisiología , Factores de Transcripción/fisiología , Factores de Edad , Animales , Tipificación del Cuerpo/fisiología , Bromodesoxiuridina/metabolismo , Embrión de Pollo , Electroporación/métodos , Embrión de Mamíferos , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Mutantes , Neuronas/citología , Rombencéfalo/citología , Rombencéfalo/embriología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
14.
J Neurosci ; 29(16): 5170-82, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19386913

RESUMEN

Mesodiencephalic dopaminergic (mDA) neurons are critical for movement control and other physiological activities. However, the molecular mechanisms underlying their development are poorly understood. We aimed to establish the expression profiles of genes involved in this process and unravel genetic programs that control late development of mDA neurons. We compared genome-wide gene expression profiles of developing mouse ventral mesencephalon (VM) using microarrays. We identified a set of genes that show spatially and temporally restricted expression in the VM in an Ngn2 (neurogenin 2)-dependent manner and are potentially important for mDA neuron development. Functional analysis on mice lacking the VM-specific gene early B-cell factor 1 (Ebf1) revealed that Ebf1 is essential for the terminal migration of mDA neurons in the substantia nigra pars compacta. Thus, we identified a set of VM-enriched genes that are important for mDA neuron development. Our analysis also provides a genetic framework for further investigation of the molecular mechanisms mediating mDA neuron development.


Asunto(s)
Dopamina/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Mesencéfalo/embriología , Mesencéfalo/fisiología , Neurogénesis/genética , Neuronas/fisiología , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Femenino , Perfilación de la Expresión Génica , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo
15.
Dev Biol ; 333(2): 386-96, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19607821

RESUMEN

Mesodiencephalic dopaminergic neurons control voluntary movement and reward based behaviours. Their dysfunction can lead to neurological disorders, including Parkinson's disease. These neurons are thought to arise from progenitors in the floor plate of the caudal diencephalon and midbrain. Members of the Foxa family of forkhead/winged helix transcription factor, Foxa1 and Foxa2, have previously been shown to regulate neuronal specification and differentiation of mesodiencephalic progenitors. However, Foxa1 and Foxa2 are also expressed earlier during regional specification of the rostral brain. In this paper, we have examined the early function of Foxa1 and Foxa2 using conditional mutant mice. Our studies show that Foxa1 and Foxa2 positively regulate Lmx1a and Lmx1b expression and inhibit Nkx2.2 expression in mesodiencephalic dopaminergic progenitors. Subsequently, Foxa1 and Foxa2 function cooperatively with Lmx1a and Lmx1b to regulate differentiation of mesodiencephalic dopaminergic neurons. Chromatin immunoprecipitation experiments indicate that Nkx2.2 and TH genes are likely direct targets of Foxa1 and Foxa2 in mesodiencephalic dopaminergic cells in vivo. Foxa1 and Foxa2 also inhibit GABAergic neuron differentiation by repressing the Helt gene in the ventral midbrain. Our data therefore provide new insights into the specification and differentiation of mesodiencephalic dopaminergic neurons and identifies Foxa1 and Foxa2 as essential regulators in these processes.


Asunto(s)
Encéfalo/embriología , Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/fisiología , Factor Nuclear 3-beta del Hepatocito/fisiología , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Inmunoprecipitación de Cromatina , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas con Homeodominio LIM , Ratones , Ratones Endogámicos C57BL , Células Madre/citología , Proteínas de Pez Cebra
16.
Nature ; 428(6981): 387-92, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15004567

RESUMEN

Patterning of the mouse embryo along the anteroposterior axis during body plan development requires migration of the distal visceral endoderm (DVE) towards the future anterior side by a mechanism that has remained unknown. Here we show that Nodal signalling and the regionalization of its antagonists are required for normal migration of the DVE. Whereas Nodal signalling provides the driving force for DVE migration by stimulating the proliferation of visceral endoderm cells, the antagonists Lefty1 and Cerl determine the direction of migration by asymmetrically inhibiting Nodal activity on the future anterior side.


Asunto(s)
Tipificación del Cuerpo , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , División Celular/efectos de los fármacos , Movimiento Celular , Citocinas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Endodermo/citología , Endodermo/efectos de los fármacos , Endodermo/metabolismo , Factores de Transcripción Forkhead , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Factores de Determinación Derecha-Izquierda , Ratones , Proteína Nodal , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética
17.
Dev Cell ; 3(5): 745-56, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12431380

RESUMEN

The anterior visceral endoderm plays a pivotal role in establishing anterior-posterior polarity of the mouse embryo, but the molecular nature of the signals required remains to be determined. Here, we demonstrate that Cerberus-like(-/-);Lefty1(-/-) compound mutants can develop a primitive streak ectopically in the embryo. This defect is not rescued in chimeras containing wild-type embryonic, and Cerberus-like(-/-);Lefty1(-/-) extraembryonic, cells but is rescued in Cerberus-like(-/-); Lefty1(-/-) embryos after removal of one copy of the Nodal gene. Our findings provide support for a model whereby Cerberus-like and Lefty1 in the anterior visceral endoderm restrict primitive streak formation to the posterior end of mouse embryos by antagonizing Nodal signaling. Both antagonists are also required for proper patterning of the primitive streak.


Asunto(s)
Tipificación del Cuerpo/fisiología , Endodermo/fisiología , Gástrula/fisiología , Proteínas/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Animales , Citocinas , Desarrollo Embrionario y Fetal , Factores de Determinación Derecha-Izquierda , Ratones , Mutagénesis , Proteína Nodal , Fenotipo , Proteínas/genética , Factor de Crecimiento Transformador beta/genética
18.
Adv Exp Med Biol ; 651: 58-65, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19731550

RESUMEN

Midbrain dopaminergic neurons (mDA), comprising the substanti nigra pars compacta (A8), the ventral tegmental area (A9) and the retrorubal field (A10) subgroups, are generated from floor plate progenitors, rostral to the isthmic boundary. Floor plate progenitors are specified to become mDA progenitors between embryonic days 8.0 and 10.5. Subsequently these progenitors undergo neuronal differentiation in two phases, termed early and late differentiation to generate immature and mature neurons respectively. Genes that regulate specification, early and late phases of differentiation ofmDA cells have recently been identified. Among them, the forkhead winged helix transcription factors Foxal and Foxa2 (Foxa1/2), have been shown to have essential and dose dependent roles at multiple phases of development. In this chapter, I will summarize recent studies demonstrating a role for Foxa1/2 in regulating the neuronal specification and differentiation ofmDA progenitors and conclude with projections on future directions of this area of research.


Asunto(s)
Dopamina/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Neuronas/metabolismo , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Humanos , Mesencéfalo/citología , Ratones , Neurogénesis/genética , Neuronas/citología
19.
Mol Biol Cell ; 17(7): 3075-84, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16641368

RESUMEN

FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.


Asunto(s)
Diferenciación Celular , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Neuronas/citología , Células Madre Pluripotentes/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Carcinoma Embrionario , Agregación Celular , Línea Celular Tumoral , Factor 8 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 8 de Crecimiento de Fibroblastos/genética , Ratones , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal , Proteína smad6/metabolismo , Regulación hacia Arriba
20.
Nat Neurosci ; 6(5): 453-60, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12652306

RESUMEN

Organizing centers emit signaling molecules that specify different neuronal cell types at precise positions along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes of neural tube during development. Here we report that reduction in Otx proteins near the alar-basal plate boundary (ABB) of murine midbrain resulted in a dorsal shift of Shh expression, and reduction in Otx proteins at the midbrain-hindbrain boundary (MHB) resulted in an anterior expansion of the Fgf8 domain. Our data thus indicate that an Otx dose-dependent repressive effect coordinates proper positioning of Shh and Fgf8 expression. Furthermore, this control is effective for conferring proper cell identity in the floor-plate region of midbrain and does not require an Otx2-specific property. We propose that this mechanism may provide both A-P and D-V positional information to neuronal precursors located within the midbrain.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Homeodominio/biosíntesis , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Transactivadores/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Tipificación del Cuerpo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Otx , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transactivadores/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA