RESUMEN
Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.
RESUMEN
BACKGROUND: In reversed-phase liquid chromatography, solute retention is primarily influenced by interactions between a nonpolar stationary phase and a moderately polar hydro-organic mobile phase, based on the solute lipophilicity. However, challenges regarding retention and peak tailing can arise due to ionic interactions between positively charged analytes and free silanols present on silica-based stationary phases. To address these challenges, incorporating surfactants and ionic liquids (ILs) into the mobile phase offers an effective solution. These additives synergistically enhance chromatographic performance through electrostatic and lipophilic interactions, which enable fine-tuning of selectivity and improved separation efficiency. RESULTS: This study explores the chromatographic behaviour of several basic compounds in aqueous mixtures containing the anionic surfactant sodium dodecyl sulphate (SDS), above its critical micellar concentration, combined with various 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) featuring chloride, tetrafluoroborate, and hexafluorophosphate anions, all without the addition of organic solvents. Specifically, this research investigates the influence of different anion types within the ILs and considers the impact of the IL cations. Analysis of solute peak profiles reveals narrow and symmetrical peaks. By introducing tetrafluoroborate and hexafluorophosphate IL anions into a mobile phase that contains an anionic surfactant, the study sheds light on the interactions occurring within the chromatographic column. This enhanced understanding of the combined effects of surfactants and ILs contributes to refining chromatographic methodologies. SIGNIFICANCE: This research highlights the importance of carefully selecting the appropriate IL when incorporating it into a micellar mobile phase alongside SDS. This combination results in practical retention times that surpass the performance achieved with either the surfactant or IL alone in the mobile phase. The study particularly emphasises the impact of the IL anion, especially in the absence of SDS and organic solvents. This unveils interactions that are otherwise obscured in micellar and hydro-organic media, providing new insights into chromatographic dynamics.
RESUMEN
In conventional reversed-phase liquid chromatography (RPLC) with hydro-organic solvents, basic cationic solutes yield retained, broad, asymmetric peaks, owing to their interaction with free anionic silanols in the stationary phase. RPLC mobile phases to which the anionic surfactant sodium dodecyl sulphate (SDS), or an ionic liquid (IL) are added, have been proposed as solutions, since these additives are able to block the silanol effect thus improving the chromatographic performance. With these additives, it is however necessary to increase the elution strength by adding an organic solvent, such as an alcohol or acetonitrile. A novel aqueous liquid chromatographic mode (in the absence of organic solvent) is here proposed, where the mobile phases contain only a mixture of aqueous solutions of SDS and an IL derived from 1-alkyl-3-methylimidazolium associated to chloride, both environmentally friendly. When these reagents are added, the anionic surfactant adsorbed on the stationary phase is able to attract the cationic solutes, whereas the adsorbed IL cation repels them. The combination of both effects (attraction and repulsion) allows the modulation of retention, by varying the IL/SDS ratio. Given the character of the additives, a type of green liquid chromatography is achieved. In this work, the chromatographic behavior of six basic compounds of pharmaceutical interest, the ß-adrenoceptor antagonists acebutolol, atenolol, carteolol, metroprolol, oxprenolol and propranolol, is examined. In order to assess the chromatographic behavior of the mixed mobile phases containing SDS and IL, changes in retention, peak profile and resolution of mixtures of the analytes were explored at varying concentration of the additives.
Asunto(s)
Líquidos Iónicos , Dodecil Sulfato de Sodio/química , Líquidos Iónicos/química , Cromatografía Liquida/métodos , Solventes/química , Tensoactivos/química , Agua/química , Etanol , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Aqueous microemulsions (MEs), where an oil coexists with water in the presence of the anionic surfactant sodium dodecyl sulphate (SDS), have been proposed as a solution to decrease the amount of organic solvent in the mobile phase needed in reversed-phase liquid chromatography (RPLC). However, the oil phase of a typical ME is volatile, toxic and flammable, and although it is added in a small amount, it would be desirable to avoid it from an environmental perspective. This is the reason for the proposal of Peng et al. (J. Chromatogr. A 1499 (2017) 132â139) to replace the oil in microemulsion liquid chromatography (MELC) by the apolar ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6C1IM][PF6]), to analyse neutral phenolic acids at acidic pH. Based on this report, an MELC procedure is here proposed for ß-adrenoceptor antagonists, which are basic compounds where the dominant species is cationic. To verify the formation of MEs containing SDS and IL, and elucidate the interactions between the cationic basic compounds with the SDS anion, and the cation and anion in the IL, an extensive study was carried out with several methylimidazolium ILs containing the cations [C2C1IM]+, [C4C1IM]+, or [C6C1IM]+, combined with the anions Cl-, BF4-, or PF6-, using 1-butanol as co-surfactant. The behaviour was compared with that observed in classical MELC with octane, micellar liquid chromatography with SDS and 1-propanol, and RPLC with mobile phases containing an IL and acetonitrile.
Asunto(s)
Líquidos Iónicos , Aniones , Cromatografía Liquida/métodos , Líquidos Iónicos/química , Aceites , Tensoactivos/química , Agua/químicaRESUMEN
The capability of liquid chromatography with microemulsions (MEs) as mobile phases was studied for the analysis of four parabens (butylparaben, ethylparaben, methylparaben, and propylparaben) and seven ß-adrenoceptor antagonists (acebutolol, atenolol, carteolol, metoprolol, oxprenolol, propranolol, and timolol). MEs were formed by mixing aqueous solutions of the anionic surfactant sodium dodecyl sulphate, the alcohol 1-butanol that played the role of co-surfactant, and octane as oil. In order to guarantee the formation of stable MEs, a preliminary study was carried out to determine the appropriate ranges of concentrations of the three components. For this purpose, mixtures of variable composition were prepared, and the possible separation of two phases (formation of an emulsion) was visually detected. The advantage offered by the addition of octane to micellar mobile phases, inside the concentration range that allows the formation of stable MEs, was evaluated by comparing the retention behaviour, peak profile and resolution of mixtures of the probe compounds, in the presence and absence of octane. The final aim of this work was the proposal of a mathematical equation to model the retention behaviour in microemulsion liquid chromatography. The derived global model that considered the three factors (surfactant, alcohol and oil) allowed the prediction of retention times at diverse mobile phase compositions with satisfactory accuracy (in the 1.1â2.5% range). The behaviour was compared with that found with mobile phases without octane. The model also yielded information about the retention mechanism and revealed that octane, when inserted inside the micelle, modifies the interaction between solutes and micelles.
Asunto(s)
Cromatografía Liquida/normas , Emulsiones/química , Modelos Químicos , Butanoles/química , Micelas , Parabenos/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Agua/químicaRESUMEN
In reversed-phase liquid chromatography (RPLC), basic drugs are positively charged at the usual working pH range and interact with free anionic silanols present in conventional silica-based stationary phases. This translates into stronger retention and tailed and broadened peaks. This problem can be resolved by the addition of reagents to the mobile phase that are adsorbed on the stationary phase, avoiding the access of solutes to silanols. Among these additives, surfactants under micellar conditions have provided good silanol suppressing potency through the technique known as micellar liquid chromatography (MLC). The most common example of this is anionic sodium dodecyl sulphate (SDS). When SDS is at moderate concentration in the presence of high organic solvent content, micelles are not formed and the chromatographic mode is known as high submicellar liquid chromatography (HSLC). In contrast, the addition of an oil to an aqueous solution of SDS containing micelles gives rise to microemulsions in a chromatographic mode known as microemulsion liquid chromatography (MELC). A comprehensive comparison of the chromatographic behaviour of a set of basic ß-adrenoceptor antagonists analysed by MLC, HSLC and MELC is carried out in this work, in terms of retention, peak shape and organic solvent consumption. The study shows that high submicellar eluents reduce retention and enhance efficiency with respect to conventional RPLC and MLC. Meanwhile, MELC allows reduced analysis times with less organic solvent with respect to HSLC. The narrower and more symmetrical peaks in MLC, HSLC and MELC, with respect to conventional RPLC, reveal the presence of silanol masking.
Asunto(s)
Micelas , Tensoactivos , Cromatografía Liquida , Cromatografía de Fase Inversa , Dodecil Sulfato de SodioRESUMEN
Microemulsions (MEs) are stable, isotropically clear solutions consisting of an oil and water stabilized by a surfactant and a co-surfactant. Oil-in-water microemuslion liquid chromatography (MELC) is a relatively new chromatographic mode, which uses an O/W ME as mobile phase. Retention, selectivity and efficiency can be modified by changing the concentration of the ME components and the ratio between the aqueous and oil phases. This work makes a critical survey on the information found in the literature about the mobile phase compositions that lead to the creation of successful O/W ME mobile phases, as well as the effect of pH for ionizable compounds and temperature. The viability of performing the analyses using isocratic and gradient elution is also considered. The complexity of the composition of a successful ME, and the fact that the different factors interact each other, may require many manipulations during method development to achieve an acceptable separation for complex mixtures. This is the reason of the proposal from several authors of a standard ME as starting point when developing a method for a new separation with no previous reports. Based on these initial conditions, the interest of several authors in applying computer-assisted approaches to optimize the composition of ME mobile phases, and reduce significantly the time and reagent consumption for method development, is described. Some practical tips are given to prepare stable ME mobile phases that yield reproducible results.
Asunto(s)
Cromatografía Liquida , Aceites/química , Agua/química , Cromatografía Liquida/normas , Tensoactivos/químicaRESUMEN
In reversed-phase liquid chromatography, the performance for basic compounds is affected by the interaction of the protonated (cationic) species with the anionic free silanols on the alkyl-bonded stationary phases. Using aqueous-organic mobile phases in the absence of additives, the retention may be too high, and the peaks be broad and asymmetric. The performance is improved by addition to the mobile phase of ionic liquids, from which 1-hexyl-3-methylimidazolium chloride ([C6MIm][Cl]) has especially good characteristics. A recent report has also revealed that the use of the phosphate system as buffer, at varying concentration and pH, may have a significant role in the chromatographic performance of basic compounds, with effects on both retention and peak shape. In this work, this study has been extended to other three buffer systems (acetate, citrate, and formate), at increasing concentrations and pH 3 and 7, in the presence and absence of [C6MIm][Cl]. The results have been compared with those obtained with the phosphate system. The retention increases by addition of larger concentration of all buffers, in both absence and presence of [C6MIm][Cl]. Without additive, peak performance is also enhanced significantly. This effect is minimal in the presence of [C6MIm][Cl], which yields highly symmetrical peaks at all buffer concentrations, due to an effective blocking of the silanol activity.
Asunto(s)
Boratos/química , Cromatografía de Fase Inversa/métodos , Imidazoles/química , Acetonitrilos/química , Antagonistas Adrenérgicos beta/análisis , Tampones (Química) , Cromatografía Líquida de Alta Presión/métodos , Concentración de Iones de Hidrógeno , Líquidos Iónicos/química , Solventes , Agua/químicaRESUMEN
The reversed-phase liquid chromatographic (RPLC) behavior (retention, elution strength, selectivity, efficiency, and peak asymmetry) for a group of basic drugs (beta-blockers), with mobile phases containing the anionic surfactant sodium dodecyl sulfate (SDS) and acetonitrile, revealed different separation environments, depending on the concentrations of both modifiers: hydro-organic, submicellar at low surfactant concentration and high concentration of organic solvent, micellar, and submicellar at high concentration of both surfactant and organic solvent. In the surfactant-mediated modes, the anionic surfactant layer adsorbed on the stationary phase interacts strongly with the positively charged basic drugs increasing the retention and masks the silanol groups that are the origin of the poor efficiencies and tailing peaks in hydro-organic RPLC with conventional columns. Also, the strong attraction between the cationic solutes and anionic SDS micelles or monomers in the mobile phase enhances the solubility and allows a direct transfer mechanism of the cationic solutes from micelles to the modified stationary phase, which has been extensively described for highly hydrophobic solutes.
Asunto(s)
Cromatografía Liquida/métodos , Micelas , Preparaciones Farmacéuticas/química , Solventes/química , Acetonitrilos , Dodecil Sulfato de SodioRESUMEN
The growing interest in ionic liquids (ILs) has resulted in an exponentially increasing production of analytical applications. The potential of ILs in chemistry is related to their unique properties as non-molecular solvents: a negligible vapor pressure associated to a high thermal stability. ILs found uses in different sub-disciplines of analytical chemistry. After drawing a rapid picture of the physicochemical properties of selected ILs, this review focuses on their use in separation techniques: gas chromatography (GC), liquid chromatography (LC) and electrophoretic methods (CE). In LC and CE, ILs are not used as pure solvents, but rather diluted in aqueous solutions. In this situation ILs are just salts. They are dual in nature. Too often the properties of the cations are taken as the properties of the IL itself. The lyotropic theory is recalled and the effects of a chaotropic anion are pointed out. Many results can be explained considering all ions present in the solution. Ion-pairing and ion-exchange mechanisms are always present, associated with hydrophobic interactions, when dealing with IL in diluted solutions. Chromatographic and electrophoretic methods are also mainly employed for the control and monitoring of ILs. These methods are also considered. ILs will soon be produced on an industrial scale and it will be necessary to develop reliable analytical procedures for their analysis and control.
Asunto(s)
Cromatografía Liquida/métodos , Electroforesis Capilar/métodos , Líquidos Iónicos , Cromatografía de Gases/métodos , Cromatografía Capilar Electrocinética Micelar/métodos , Distribución en Contracorriente/métodos , Líquidos Iónicos/análisis , Líquidos Iónicos/química , Solventes/químicaRESUMEN
The performance of the solvation parameter model is examined for micellar liquid chromatography. The results are compared with those offered with hydro-organic eluents, intending to reveal the properties that influence the retention and distinguish the particular behaviour of micellar systems. The retention data of several series of non-ionisable and ionisable compounds (mainly steroids, polyaromatic hydrocarbons, phenols, sulfonamides, beta-blockers, phenethylamines, antihistamines, and diuretics) were used as probe compounds. The micellar mobile phases contained an anionic (sodium dodecyl sulphate), non-ionic (Brij-35), or cationic (cetyltrimethylamonium bromide) surfactant, with or without the addition of an organic solvent (either propanol, butanol, pentanol or acetonitrile). In some instances (steroids, sulfonamides, beta-blockers and diuretics), the processed data were obtained in both micellar and hydro-organic chromatographic modes using the same column. Accuracy in predictions is critically examined and a correction term that takes into account contributions not considered in the original Abraham model, such as electrostatic or steric ones, is suggested to improve the correlations. The proposed correction takes into account differences between the descriptors of ionic and neutral species. The case of compounds showing different degrees of ionisation is discussed. Three solvation parameter approaches that allow the prediction of retention at varying mobile phase composition are proposed, which also revealed differences between the micellar and hydro-organic modes.
Asunto(s)
Cromatografía Liquida/métodos , Solventes , Tensoactivos , MicelasRESUMEN
The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented.
Asunto(s)
Cromatografía de Gases/métodos , Cromatografía Liquida/métodos , Electroforesis Capilar/métodos , Líquidos Iónicos/química , Distribución en Contracorriente , Gases/química , Solventes/química , Espectrometría de Masa por Ionización de Electrospray , ViscosidadRESUMEN
The presence of anionic free silanols in the silica-based stationary phases gives rise to broad and asymmetrical peaks when cationic basic compounds are chromatographed using hydro-organic mobile phases. The addition to the mobile phase of a reagent with ionic character prevents the access of analytes to the free silanols, improving the peak shape. The silanol activity can be affected by the buffer concentration and mobile phase pH, factors that are not always considered sufficiently in the literature. In this work, the chromatographic behaviour of three basic ß-adrenoceptor antagonists (acebutolol, nadolol and timolol), using mobile phases containing acetonitrile, was examined at different phosphate buffer concentrations (5-50mM) and mobile phase pH (2-8), in the absence and presence of three imidazolium-based ionic liquids (1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium chloride). All factors were evaluated through both the retention and peak shape. The imidazolium cations can block the access of cationic analytes through electrostatic interaction with the anionic silanols, or association with the alkyl chains bound to the stationary phase. In previous reports, the protection mechanism was demonstrated to be directly related to the cation size. The studies in this work reveal that the effectiveness of the mobile phase additive as silanol blocker also depends on the concentration of the buffer anion and the protonation degree of the silanols on the stationary phase. Increasing amounts of phosphate at low pH give rise to increasing retention times. Also, the peak shape is improved, which indicates the influence of phosphate on blocking the activity of free silanols. However, the benefits obtained by the combined effect of buffering the mobile phase at low pH and the use of a bulky additive are lost at pH>6.
Asunto(s)
Líquidos Iónicos/química , Fosfatos/química , Silanos/química , Tampones (Química) , Cromatografía de Fase Inversa , Concentración de Iones de Hidrógeno , Electricidad EstáticaRESUMEN
The reversed-phase chromatographic behaviour of six tricyclic antidepressants (amitryptiline, clomipramine, doxepin, imipramine, nortryptiline and maprotiline) was examined in this work with acetonitrile-water mobile phases, in the absence and presence of the ionic liquids 1-hexyl-3-methylimidazolium chloride and 1-hexyl-3-methylimidazolium tetrafluoroborate, which have interesting features for the separation of basic compounds, in terms of peak shape combined with reduced retention. Tricyclic antidepressants are low polarity drugs that strongly associate to the alkyl chains of conventional stationary phases. They are also positively charged in the usual working pH range (2-8) in reversed-phase liquid chromatography, due to their strong basic character. In consequence, they may interact with the residual ionised silanols present in conventional silica-based stationary phases, which is translated in stronger retention, and tailed and broad peaks. A simple chromatographic procedure for the control of tricyclic antidepressants in pharmaceutical formulations was developed using a C8 column and a mobile phase containing 30% acetonitrile/10 mM 1-hexyl-3-methylimidazolium chloride at pH 3, with UV detection. Intra- and inter-day precisions were usually below +1.0%, and intra- and inter-day bias (trueness) ranged between â2.1% and +2.4%, and between â3.0% and +2.3%, respectively. Sample preparation was simple and only required solubilisation and filtration previous to injection.
Asunto(s)
Antidepresivos Tricíclicos/química , Boratos/química , Imidazoles/química , Líquidos Iónicos/química , Amitriptilina/análisis , Amitriptilina/química , Antidepresivos Tricíclicos/análisis , Cromatografía de Fase Inversa/métodos , Doxepina/análisis , Doxepina/química , Composición de Medicamentos , Límite de Detección , Nortriptilina/análisis , Nortriptilina/química , Espectrofotometría UltravioletaRESUMEN
Solvation parameter models relate linearly compound properties with five fundamental solute descriptors (excess molar refraction, dipolarity/polarizability, effective hydrogen-bond acidity and basicity, and McGowan volume). These models are widely used, due to the availability of protocols to obtain the descriptors, good performance, and general applicability. Several approaches to predict retention in reversed-phase liquid chromatography (RPLC) as a function of these descriptors and mobile phase composition are compared, assaying the performance with a set of 146 organic compounds of diverse nature, eluted with acetonitrile and methanol. The approaches are classified in two groups: those that only allow predictions of retention for the mobile phases used to build the models, and those valid at any other mobile phase composition. The first group includes the use of ratios between the regressed coefficients of the solvation models that are assumed to be characteristic for a column/solvent system, and the application of offsets to transfer the retention from a reference mobile phase to any other. Maximal accuracy in predictions corresponded, however, to the approaches in the second group, which were based on models that describe the retention as a function of mobile phase composition (expressed as the solvent volume fraction or a normalised polarity measurement), where the coefficients were made dependent on the solvent descriptors. The study revealed the properties that influence the retention and distinguish the particular behaviour of acetonitrile and methanol in RPLC.
Asunto(s)
Cromatografía Liquida/métodos , Solventes/química , Acetonitrilos/química , Metanol/química , Modelos TeóricosRESUMEN
A simple model is proposed that relates the parameters describing the peak width with the retention time, which can be easily predicted as a function of mobile phase composition. This allows the further prediction of peak shape with global errors below 5%, using a modified Gaussian model with a parabolic variance. The model is useful in the optimisation of chromatographic resolution to assess an eventual overlapping of close peaks. The dependence of peak shape with mobile phase composition was studied for mobile phases containing acetonitrile in the presence and absence of micellised surfactant (micellar-organic and hydro-organic reversed-phase liquid chromatography, RPLC). In micellar RPLC, both modifiers (surfactant and acetonitrile) were observed to decrease or improve the efficiencies in the same percentage, at least in the studied concentration ranges. The study also revealed that the problem of achieving smaller efficiencies in this chromatographic mode, compared to hydro-organic RPLC, is not only related to the presence of surfactant covering the stationary phase, but also to the smaller concentration of organic solvent in the mobile phase.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Modelos Teóricos , Acetonitrilos/química , Algoritmos , Cromatografía Líquida de Alta Presión/instrumentación , Dodecil Sulfato de Sodio/químicaRESUMEN
A comparative study of peak shape, elution behavior, elution strength and resolution of seven beta-blockers (acebutolol, alprenolol, labetalol, metoprolol, nadolol, pindolol and propranolol) chromatographed with aqueous-organic mobile phases containing additives such as the ionic liquid (IL) 1-butyl-3-methylimidazolium (BMIM BF(4)) or triethylamine (TEA) is performed using a conventional reversed-phase Kromasil C(18) column and isocratic elution. The efficiencies and asymmetry factors achieved for the group of beta-blockers in the Kromasil C(18) column improve when the cationic modifiers are added to the aqueous-organic mobile phase as competing additives for the silanol active sites. BMIM BF(4) is a significantly better additive compared to TEA. The improvement is more notably for the asymmetry factor, BMIM BF(4) allowing to obtain higher plate numbers than TEA at the same concentration. The effects of both modifiers on elution strength and retention factors are, however, different. TEA decreases the solute retention factors when BMIM BF(4) does not change them significantly. Using other additives taken in the IL family such as 1-butyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium tetrafluoroborate (OMIM BF(4)), it is shown that the silanol screening effect is always observed, due to the IL cation, when it is possible to increase or to decrease the solute retention factors playing with the hydrophobic nature or chaotropic character of its anion.
Asunto(s)
Antagonistas Adrenérgicos beta/análisis , Boratos/química , Cromatografía Líquida de Alta Presión/métodos , Etilaminas/química , Imidazoles/química , Iones/químicaRESUMEN
In reversed-phase liquid chromatography, cationic basic compounds yield broad and asymmetrical peaks, as a result of their ionic interaction with the anionic free silanol groups present in the silica-based stationary phases (commonly derivatised with C18 groups). A simple way to improve the peak shape is the addition to the hydro-organic mobile phase of a reagent (usually called additive) with cationic character. This associates with the stationary phase to prevent the access of analytes to the free silanol groups. Cationic additives may interact electrostatically with the anionic silanols. The hydrophobic region of the additive may also associate with the alkyl chains bound to the stationary phase, with the positive charge oriented towards the mobile phase. The access to the silanol groups is thus blocked, but in turn, the stationary phase is positively charged and will repel the protonated basic compounds, which unless their polarity is sufficiently low, will elute at very short times. In this work, a comparative study of the performance of a group of amines (butylamine, pentylamine, hexylamine, cyclopentylamine, cycloheptylamine, N,N-dimethyloctylamine and tributylmethylammonium chloride), as modifiers of the chromatographic behaviour of basic compounds, is carried out. The behaviour is compared with that obtained with the ionic liquids 1-butyl-3-methylimidazolium chloride and 1-hexyl-3-methylimidazolium chloride, used as additives. The study revealed that the performance of the cationic additives to block the silanol activity is mainly explained by the additive size and its ability to be adsorbed onto the stationary phase.
Asunto(s)
Aminas/química , Cromatografía de Fase Inversa , Silanos/química , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/aislamiento & purificación , Boratos/química , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/química , Líquidos Iónicos/químicaRESUMEN
The octanol-water distribution constant, commonly called partition coefficient, Po/w, is a parameter often retained as a measure of the hydrophobicity of a molecule. log Po/w, for a given molecule, can be conveniently evaluated constructing correlation lines between standard retention factor logarithms (log k) in reversed-phase liquid chromatography (RPLC) and standard log Po/w values. Many compounds of pharmaceutical interest can be quite hydrophobic and have, simultaneously, basic nitrogen atoms or acidic sulfur containing groups in their structure. This renders them ionizable. The hydrophobicity of the molecular drug form (Po/w value) is completely different from its ionic form (log Po/w(+ or -) value). The actual hydrophobicity of such ionizable molecule depends on the pH. It can be represented by an apparent Papp value that takes into account the amount of compound in its molecular and ionic state combining the Po/w and Po/w(+ or -) values. In this work, log k in RPLC for ionizable as well as non-ionizable pharmaceutical compounds with different therapeutic properties (10 beta-blockers, seven tricyclic antidepressants (TA), eight steroids and 12 sulfonamides) were correlated with log Po/w. Similar correlations were done between log k and the corrected log Papp values at pH 3. Aqueous-organic mobile phases containing acetonitrile (conventional RPLC) and micellar-organic mobile phases (micellar liquid chromatography, MLC), prepared with the anionic surfactant sodium dodecyl sulfate and the organic solvents acetonitrile, propanol or pentanol, were also used to elute the compounds. All mobile phases were buffered at pH 3. Using conventional retention RPLC data, the correlation of log k with log Po/w, was satisfactory for steroids because they cannot ionize. For ionizable beta-blockers and TAs, the use of log Papp values improved the quality of the correlations, but yielded similar results for sulfonamides. In MLC, since an electrostatic interaction is added to hydrophobic forces, poorer correlations were obtained in all cases. The retention data obtained in RPLC also seems to correlate better with the biological activity of the drugs.
Asunto(s)
Cromatografía Liquida/métodos , Iones , Relación Estructura-ActividadRESUMEN
In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 ß-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs.