Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell Proteomics ; 18(6): 1227-1241, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926673

RESUMEN

Krabbe disease is a rare, childhood lysosomal storage disorder caused by a deficiency of galactosylceramide beta-galactosidase (GALC). The major effect of GALC deficiency is the accumulation of psychosine in the nervous system and widespread degeneration of oligodendrocytes and Schwann cells, causing rapid demyelination. The molecular mechanisms of Krabbe disease are not yet fully elucidated and a definite cure is still missing. Here we report the first in-depth characterization of the proteome of the Twitcher mouse, a spontaneous mouse model of Krabbe disease, to investigate the proteome changes in the Central and Peripheral Nervous System. We applied a TMT-based workflow to compare the proteomes of the corpus callosum, motor cortex and sciatic nerves of littermate homozygous Twitcher and wild-type mice. More than 400 protein groups exhibited differences in expression and included proteins involved in pathways that can be linked to Krabbe disease, such as inflammatory and defense response, lysosomal proteins accumulation, demyelination, reduced nervous system development and cell adhesion. These findings provide new insights on the molecular mechanisms of Krabbe disease, representing a starting point for future functional experiments to study the molecular pathogenesis of Krabbe disease. Data are available via ProteomeXchange with identifier PXD010594.


Asunto(s)
Sistema Nervioso Central/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Sistema Nervioso Periférico/metabolismo , Proteómica/métodos , Animales , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Femenino , Ontología de Genes , Masculino , Ratones , Sistema Nervioso Periférico/patología , Análisis de Componente Principal , Proteoma/metabolismo
2.
Neurobiol Dis ; 129: 195-207, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31108173

RESUMEN

Krabbe disease (KD) is a childhood leukodystrophy with no cure currently available. KD is due to a deficiency of a lysosomal enzyme called galactosyl-ceramidase (GALC) and is characterized by the accumulation in the nervous system of the sphingolipid psychosine (PSY), whose cytotoxic molecular mechanism is not fully known yet. Here, we study the expression of some fundamental autophagy markers (LC3, p62, and Beclin-1) in a KD murine model [the twitcher (TWI) mouse] by immunohistochemistry and Western blot. Moreover, the autophagy molecular process is also shown in primary fibroblasts from TWI and WT mice, with and without PSY treatment. Data demonstrate that large p62 cytoplasmic aggregates are present in the brain of both early and late symptomatic TWI mice. p62 expression is also upregulated in TWI sciatic nerves compared to that measured for WT nerves. In vitro data suggest that this effect might not be fully PSY-driven. Finally, we investigate in vitro the capability of autophagy inducers (Rapamycin, RAP and Resveratrol, RESV) to reinstate the WT phenotype in TWI cells. We show that RAP administration can partially restore the autophagy markers levels, while RESV cannot, indicating a line along which new therapeutic approaches can be developed.


Asunto(s)
Autofagia/fisiología , Encéfalo/patología , Leucodistrofia de Células Globoides/patología , Nervio Ciático/patología , Animales , Autofagia/efectos de los fármacos , Biomarcadores/análisis , Encéfalo/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Ratones , Resveratrol/farmacología , Nervio Ciático/metabolismo , Sirolimus/farmacología
3.
Bioconjug Chem ; 29(7): 2225-2231, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29894633

RESUMEN

Polymeric nanoparticles (NPs) represent one of the most promising tools in nanomedicine and have been extensively studied for the delivery of water-insoluble drugs. However, the efficient loading of therapeutic enzymes and proteins in polymer-based nanostructures remains an open challenge. Here, we report a synthesis method for a new enzyme delivery system based on cross-linked enzyme aggregates (CLEAs) encapsulation into poly(lactide- co-glycolide) (PLGA) NPs. We tested the encapsulation strategy on four enzymes currently investigated for enzyme replacement therapy: palmitoyl protein thioesterase 1 (PPT1; defective in NCL1 disease), galactosylceramidase (GALC; defective in globoid cell leukodystrophy), alpha glucosidase (aGLU; defective in Pompe disease), and beta glucosidase (bGLU; defective in Gaucher's disease). We demonstrated that our system allows encapsulation of enzymes with excellent activity retention (usually around 60%), thus leading to functional and targeted nanostructures suitable for enzyme delivery. We then demonstrated that CLEA NPs efficiently deliver PPT1 in cultured cells, with almost complete enzyme release occurring in 48 h. Finally, we demonstrated that enzymatic activity is fully recovered in primary NCL1 fibroblasts upon treatment with PPT1 CLEA NPs.


Asunto(s)
Portadores de Fármacos/química , Enzimas/administración & dosificación , Nanopartículas/química , Polímeros/uso terapéutico , Células Cultivadas , Fibroblastos/metabolismo , Galactosilceramidasa/administración & dosificación , Humanos , Métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Solubilidad , Tioléster Hidrolasas/administración & dosificación , alfa-Glucosidasas/administración & dosificación , beta-Glucosidasa/administración & dosificación
4.
J Neurosci Res ; 94(11): 1246-60, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638607

RESUMEN

Globoid cell leukodystrophy (GLD) is a rare, rapidly progressing childhood leukodystrophy triggered by deficit of the lysosomal enzyme galactosylceramidase (GALC) and characterized by the accumulation of galactosylsphingosine (psychosine; PSY) in the nervous system. PSY is a cytotoxic sphingolipid, which leads to widespread degeneration of oligodendrocytes and Schwann cells, causing demyelination. Here we report on autophagy in the human oligodendrocyte cell line MO3.13 treated with PSY and exploitation of Li as an autophagy modulator to rescue cell viability. We demonstrate that PSY causes upregulation of the autophagic flux at the level of autophagosome and autolysosome formation and LC3-II expression. We show that pretreatment with Li, a drug clinically used to treat bipolar disorders, can further stimulate autophagy, improving cell tolerance to PSY. This Li protective effect is found not to be linked to reduction of PSY-induced oxidative stress and might not stem from a reduction of PSY accumulation. These data provide novel information on the intracellular pathways activated during PSY-induced toxicity and suggest the autophagy pathway as a promising novel therapeutic target for ameliorating the GLD phenotype. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Autofagia/efectos de los fármacos , Litio/farmacología , Oligodendroglía/efectos de los fármacos , Psicosina/farmacología , Análisis de Varianza , Anexina A5/metabolismo , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lactosilceramidos/genética , Lactosilceramidos/metabolismo , Psicosina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Biomed Pharmacother ; 173: 116351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422660

RESUMEN

Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve. We also demonstrated that the autophagy inducer Rapamycin (RAPA) can partially reinstate the wild type (WT) phenotype in KD primary cells by decreasing the number of p62 aggregates. In this study, we tested RAPA in the Twitcher (TWI) mouse, a spontaneous KD mouse model. We administered the drug ad libitum via drinking water (15 mg/L) starting from post-natal day (PND) 21-23. We longitudinally monitored the mouse motor performance through grip strength and rotarod tests, and a set of biochemical parameters related to the KD pathogenesis (i.e. autophagy markers expression, PSY accumulation, astrogliosis and myelination). Our findings demonstrate that RAPA significantly enhances motor functions at specific treatment time points and reduces astrogliosis in TWI brain, spinal cord, and sciatic nerves. Utilizing western blot and immunohistochemistry, we observed a decrease in p62 aggregates in TWI nervous tissues, corroborating our earlier in-vitro results. Moreover, RAPA treatment partially removes PSY in the spinal cord. In conclusion, our results advocate for considering RAPA as a supportive therapy for KD. Notably, as RAPA is already available in pharmaceutical formulations for clinical use, its potential for KD treatment can be rapidly evaluated in clinical trials.


Asunto(s)
Agua Potable , Leucodistrofia de Células Globoides , Animales , Ratones , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Sirolimus/farmacología , Gliosis , Modelos Animales de Enfermedad , Psicosina/metabolismo , Fenotipo , Autofagia
6.
JIMD Rep ; 63(1): 50-65, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028271

RESUMEN

Krabbe disease (KD; or globoid cell leukodystrophy) is an autosomal recessive lysosomal storage disorder caused by deficiency of the galactosylceramidase (GALC) enzyme. No cure is currently available for KD. Clinical applied treatments are supportive only. Recently, we demonstrated that two differently acting autophagy inducers (lithium and rapamycin) can improve some KD hallmarks in-vitro, laying the foundation for their in-vivo pre-clinical testing. Here, we test lithium carbonate in-vivo, in the spontaneous mouse model for KD, the Twitcher (TWI) mouse. The drug is administered ad libitum via drinking water (600 mg/L) starting from post natal day 20. We longitudinally monitor the mouse motor performance through the grip strength, the hanging wire and the rotarod tests, and a set of biochemical parameters related to the KD pathogenesis [i.e., GALC enzymatic activity, psychosine (PSY) accumulation and astrogliosis]. Additionally, we investigate the expression of some crucial markers related to the two pathways that could be altered by lithium: the autophagy and the ß-catenin-dependent pathways. Results demonstrate that lithium has not a significant rescue effect on the TWI phenotype, although it can slightly and transiently improves muscle strength. We also show that lithium, with this administration protocol, is unable to stimulate autophagy in the TWI mice central nervous system, whereas results suggest that it can restore the ß-catenin activation status in the TWI sciatic nerve. Overall, these data provide intriguing inputs for further evaluations of lithium treatment in TWI mice.

7.
Front Physiol ; 13: 875189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480048

RESUMEN

In acute malaria, the bulk of erythrocyte loss occurs after therapy, with a nadir of hemoglobin generally observed 3-7 days after treatment. The fine mechanisms leading to this early post-treatment anemia are still elusive. We explored pathological changes in RBC subpopulations by quantifying biochemical and mechanical alterations during severe malaria treated with artemisinin derivatives, a drug family that induce "pitting" in the spleen. In this study, the hemoglobin concentration dropped by 1.93 G/dl during therapy. During the same period, iRBC accounting for 6.12% of all RBC before therapy (BT) were replaced by pitted-RBC, accounting for 5.33% of RBC after therapy (AT). RBC loss was thus of 15.9%, of which only a minor part was due to the loss of iRBC or pitted-RBC. When comparing RBC BT and AT to normal controls, lipidomics revealed an increase in the cholesterol/phosphatidylethanolamine ratio (0.17 versus 0.24, p < 0.001) and cholesterol/phosphatidylinositol ratio (0.36 versus 0.67, p = 0.001). Using ektacytometry, we observed a reduced deformability of circulating RBC, similar BT and AT, compared to health control donors. The mean Elongation Index at 1.69Pa was 0.24 BT and 0.23 AT vs. 0.28 in controls (p < 0.0001). At 30Pa EI was 0.56 BT and 0.56 AT vs. 0.60 in controls (p < 0.001). The retention rate (rr) of RBC subpopulations in spleen-mimetic microsphere layers was higher for iRBC (rr = 20% p = 0.0033) and pitted-RBC (rr = 19%, p = 0.0031) than for healthy RBC (0.12%). Somewhat surprisingly, the post-treatment anemia in malaria results from the elimination of RBC that were never infected.

8.
Sci Adv ; 5(11): eaax7462, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31799395

RESUMEN

Lysosomal storage disorders (LSDs) result from an enzyme deficiency within lysosomes. The systemic administration of the missing enzyme, however, is not effective in the case of LSDs with central nervous system (CNS)-involvement. Here, an enzyme delivery system based on the encapsulation of cross-linked enzyme aggregates (CLEAs) into poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) functionalized with brain targeting peptides (Ang2, g7 or Tf2) is demonstrated for Krabbe disease, a neurodegenerative LSD caused by galactosylceramidase (GALC) deficiency. We first synthesize and characterize Ang2-, g7- and Tf2-targeted GALC CLEA NPs. We study NP cell trafficking and capability to reinstate enzymatic activity in vitro. Then, we successfully test our formulations in the Twitcher mouse. We report enzymatic activity measurements in the nervous system and in accumulation districts upon intraperitoneal injections, demonstrating activity recovery in the brain up to the unaffected mice level. Together, these results open new therapeutic perspectives for all LSDs with major CNS-involvement.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Terapia de Reemplazo Enzimático/métodos , Galactosilceramidasa/administración & dosificación , Leucodistrofia de Células Globoides/terapia , Nanopartículas/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Galactosilceramidasa/deficiencia , Células HEK293 , Antígenos HLA/metabolismo , Humanos , Leucodistrofia de Células Globoides/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ribonucleasa Pancreática/metabolismo , Valina-ARNt Ligasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA