Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Biomacromolecules ; 21(12): 4709-4723, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33119299

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) copolymer's properties depend on (i) the molar fraction of comonomers, (ii) the overall molar mass, and (ii) the chemical compositional distribution. This work aims at providing a better understanding of the effect of the P(3HB-3HV) molecular structure, produced from mixed cultures and waste feedstock, on copolymer crystallization and tensile properties. Conventional biopolymer characterization methods (differential scanning calorimetry, X-ray diffraction, and polarized optical microscopy) were coupled to both classical one-dimensional (1H and 13C) and advanced two-dimensional (diffusion-ordered spectroscopy (DOSY) and 1H/13C heteronuclear single quantum coherence (HSQC)) nuclear magnetic resonance (NMR) spectroscopy techniques. The obtained results evidenced that (i) a high-quality copolymer could be achieved, even from a waste feedstock; (ii) increasing the 3HV content displayed a positive impact on P(3HB-3HV) mechanical properties only if good interactions between 3HB and 3HV moieties were established; and (iii) the purification process eliminated short-length 3HV-rich chains and promoted homogeneous co-crystallization. Such optimized microstructures enabled the maximal stress and strain at break to be increased by +41.2 and +100%, respectively.


Asunto(s)
Hidroxibutiratos , Poliésteres , Cristalización , Estructura Molecular
2.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905702

RESUMEN

Vine shoots are lignocellulosic agricultural residues. In addition to being an interesting source of polyphenols, they can be used as fillers in a poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) matrix to decrease the overall cost and to propose an alternative to non-biodegradable fossil-based materials. The objective of the present work was to investigate how the incorporation of vine shoots fillers and a preliminary polyphenol extraction step could impact the biodegradability of biocomposites. Biocomposites (20 wt %) were produced by microcompounding. The biodegradation of materials was assessed by respirometric tests in soil. The negative impact of polyphenols on the biodegradability of vine shoots was confirmed. This was supported by crystallinity measurements and scanning electron microscopy (SEM) observations, which showed no difference in structure nor morphology between virgin and exhausted vine shoots particles. The incorporation of vine shoots fillers in PHBV slightly accelerated the overall biodegradation kinetics. All the biocomposites produced were considered fully biodegradable according to the French and European standard NF EN 17033, allowing the conclusion that up-cycling vine shoots for the production of lignocellulosic fillers is a promising strategy to provide biodegradable materials in natural conditions. Moreover, in a biorefinery context, polyphenol extraction from vine shoots has the advantage of improving their biodegradability.


Asunto(s)
Brotes de la Planta/química , Poliésteres/química , Vitis/química , Biodegradación Ambiental , Lignina/química , Polifenoles/química
3.
ACS Omega ; 9(27): 29360-29371, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005805

RESUMEN

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (P(3HB-co-3HV) copolymers are an attractive class of biopolymers whose properties can be tailored by changing the 3-hydroxyvalerate monomer (3HV) concentration, offering the possibility of counteracting problems related to high crystallinity, brittleness, and processability. However, there are few studies about the effects of 3HV content on the processability of copolymers. The present study aims to provide new insights into the effect of 3HV content on the processing step including common practices like compounding, addition of nucleation agents and/or amorphous polymers as plasticizers. P(3HB-co-3HV)-based films containing 3, 18, and 28 mol % 3HV were processed into films by extrusion and subsequent molding. The characterization results confirmed that increasing the 3HV content from 3 to 28 mol % resulted in a decrease in the melting point (from 175 to 100 °C) and an improvement in mechanical properties (i.e., elongation at break from 7 ± 1% to 120 ± 3%). The behavior of P(3HB-co-3HV) in the presence of additives was also investigated. It was shown that an increase in the 3HV content leads to better miscibility with amorphous polymers.

4.
MethodsX ; 10: 102177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122370

RESUMEN

Reconstruction of three-dimensional (3D) structure from experimental image acquisition (e.g., from micro computed tomography data) is very useful in composite material science. Composite considered are characterized by a dispersion of particles in a continuous phase. Many properties of the composite (e.g., mass transfer properties) depend on its structural assembly. A reliable prediction of these properties requires to well represent this structure and especially, the region at the vicinity of the dispersed phase. (3D) structure generation must thus permit to (1) simplify the real composite structure observed to make it compatible with further modelling tasks (e.g., meshing constraints in finite elements methods, computation time) and (2) keep enough representativeness of the structure of the specimen to produce reliable numerical predictions. This article describes an innovative, cascading (3D) reconstruction procedure of composite material from microtomography data.•First step of this pipeline is the extraction of relevant structural markers from microtomography images using image analysis.•Second step is the modelling of the distribution of the structural markers selected (statistical laws).•Third and final step is the reconstruction of the (3D) structures based on the pre-determined distribution laws in a RVE (representative volume element) of the composite.

5.
Membranes (Basel) ; 12(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35207049

RESUMEN

In order to lengthen the life cycle of packaging materials, it is essential to study their potential for reuse. This has been never carried out for emerging bio-based and biodegradable materials such as PHBV/(ligno-)cellulosic fibre-based biocomposite materials. This work therefore highlights the impact of successive dishwashing cycles on the physical-chemical and structural stability of such materials. Several parameters were considered to assess this stability, such as the visual aspect and colour, the microstructure, the thermal and tensile properties, and the overall migration in food liquid simulants. The effect of fibre composition, morphology, and content was investigated by selecting three types of commercial (ligno-)cellulosic fibres and two filler contents (20 and 40 wt%). A great potential for reuse of PHBV films was highlighted by their high stability after up to at least 50 dishwashing cycles. However, the addition of (ligno-)cellulosic fillers negatively impacts the stability of PHBV-based materials, especially due to the hygroscopic behaviour of (ligno-)cellulosic fillers and the heterogenous microstructure of biocomposites, with at best up to 10 possible dishwashing cycles for ultra-pure cellulose. In conclusion, reuse including dishwashing steps can be considered for neat PHBV materials, while this should be prohibited for PHBV/(ligno-)cellulosic fibre-based biocomposite materials.

6.
Data Brief ; 42: 108191, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35515991

RESUMEN

Due to the rising amount of plastic waste generated each year, multiple questions are emerging about their harmful long-term effects on the environment, the eco-systems and human health. One possible strategy to mitigate these issues is to substitute conventional plastics by materials fully biodegradable in natural conditions, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In order to decrease the overall cost and environmental impact of PHBV-based materials while modulating their technical performance, PHBV can be combined with lignocellulosic fillers. In this article, a total of 88 formulations of PHBV-based biocomposites has been collected, distributed over 5 interdisciplinary projects involving computer scientists, data scientists and biomass processing experts for food and bio-based material production. Available data concern the technical process descriptions, including the description of each step and the different observations measured. These data are stored in a knowledge base that can be queried on the Web.

7.
Biomacromolecules ; 12(5): 1487-93, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21491916

RESUMEN

A phenomenological modeling approach was developed to try to understand the reinforcing mechanism of starch nanocrystals in a nonvulcanized natural rubber matrix. Natural rubber was not cross-linked to maintain the biodegradability of the biosourced materials. Nonlinear dynamic mechanical experiments highlighted the significant reinforcing effect of starch nanocrystals and the presence of the Mullins and Payne effects. Two models were used to predict the Payne effect considering that either filler-filler (Kraus model) or matrix-filler (Maier and Göritz model) interactions are preponderant. The use of the Maier and Goritz model demonstrated that phenomena of adsorption and desorption of NR chains on the filler surface governed nonlinear viscoelastic properties, even if the formation of a percolating network for filler contents >6.7 vol % was evidenced by the Kraus model.


Asunto(s)
Nanopartículas , Goma/química , Almidón/química , Microscopía Electrónica de Transmisión
8.
Waste Manag ; 120: 538-548, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131999

RESUMEN

Urban parks and gardens green waste constitute a low-cost and highly available lignocellulosic-rich resource, that is currently treated in composting or anaerobic digestion processes. The present work investigated for the first time the potential of using urban green waste as raw resource for the production of lignocellulosic fillers by dry fractionation (combination of sorting and grinding processes). Five fractions of lignocellulosic fillers with controlled composition were produced: a branches-rich fraction, a grasses-rich fraction, a leaves-rich fraction, and two fractions constituted of a mixture of constituents. All the fractions were ground to reach an average median diameter around 100 µm. The reinforcing effect of each fraction was investigated and compared to that of the sample as a whole. Biocomposites based on a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as matrix were produced by melt extrusion, with filler contents up to 30 wt%. It was shown that the branches-rich fraction displayed the best reinforcing effect (e.g. stress at break of 37 ± 1 MPa for a filler content of 15 wt%, similar to that of the neat matrix) whereas the grasses-rich fraction slightly degraded the overall mechanical performance (e.g. stress at break of 33.5 ± 1.5 MPa for a filler content of 15 wt%). The dry fractionation and formulation steps could be thus adapted depending on the targeted application, e.g. by choosing to use the whole urban green waste resource, or to remove grasses, or to keep only branches.


Asunto(s)
Jardines , Parques Recreativos , Hidroxibutiratos
9.
Polymers (Basel) ; 13(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578771

RESUMEN

The dynamic and equilibrium water vapor sorption properties of amorphous and highly crystalline poly(ethylene vanillate) (PEV) films were determined via gravimetric analysis, at 20 °C, over a wide range of relative humidity (0-95% RH). At low RH%, the dynamic of the sorption process obeys Fick's law while at higher relative humidity it is characterized by a drift ascribable to non-Fickian relaxations. The non-Fickian relaxations, which are responsible for the incorporation of additional water, are correlated with the upturn of the sorption isotherms and simultaneously the hysteresis recorded between sorption and desorption cycles. The sorption isotherms of amorphous and highly crystalline PEV are arranged in the same concentration range of that of PET proving the similarity of the two polyesters. Water diffusion coefficients, whose determination from individual kinetic sorption/desorption curves required treatment with the Barens-Hopfenberg model, were demonstrated to be ≈ 10× higher for amorphous PEV compared to amorphous PET. Such a difference originates from the enhanced segmental flexibility of PEV chains.

10.
Polymers (Basel) ; 13(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34301015

RESUMEN

A three-dimensional model structure that allows considering interphase layer around permeable inclusions is developed to predict water vapor permeability in composite materials made of a matrix Poly(3-HydroxyButyrate-co-3-HydroxyValerate) (PHBV) including Wheat Straw Fiber (WSF) particles. About 500 two-phase structures corresponding to composites of different particles volume fractions (5.14-11.4-19.52 % v/v) generated using experimental particles' size distribution have permitted to capture all the variability of the experimental material. These structures have served as a basis to create three-phase structures including interphase zone of altered polymer property surrounding each particle. Finite Element Method (FEM) applied on these structures has permitted to calculate the relative permeability (ratio between composite and neat matrix permeability P/Pm). The numerical results of the two-phase model are consistent with the experimental data for volume fraction lower than 11.4 %v/v but the large upturn of the experimental relative permeability for highest volume fraction is not well represented by the two-phase model. Among hypothesis made to explain model's deviation, the presence of an interphase with its own transfer properties is numerically tested: numerical exploration made with the three-phase model proves that an interphase of 5 µm thick, with diffusivity of Di≥1×10-10 m2·s-1, would explain the large upturn of permeability at high volume fraction.

11.
Polymers (Basel) ; 12(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664324

RESUMEN

Two winery residues, namely vine shoots (ViSh) and wine pomace (WiPo), were up-cycled as fillers in PHBV-based biocomposites. Answering a biorefinery approach, the impact of a preliminary polyphenols extraction step using an acetone/water mixture on the reinforcing effect of fillers was assessed. Biocomposites (filler content up to 20 wt%) were prepared by melt-mixing and compared in terms of final performance (thermal, mechanical and barrier). It was shown that the reinforcing effect was slightly better in the case of vine shoots, while it was not significantly affected by the pre-treatment, demonstrating that these two winery residues could be perfectly used as fillers in composite materials even after an extraction process to maximize their potential of valorization.

12.
Polymers (Basel) ; 11(2)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30960185

RESUMEN

Materials that are both biodegradable and bio-sourced are becoming serious candidates for substituting traditional petro-sourced plastics that accumulate in natural systems. New biocomposites have been produced by melt extrusion, using bacterial polyester (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) as a matrix and cellulose particles as fillers. In this study, gas-phase esterified cellulose particles, with palmitoyl chloride, were used to improve filler-matrix compatibility and reduce moisture sensitivity. Structural analysis demonstrated that intrinsic properties of the polymer matrix (crystallinity, and molecular weight) were not more significantly affected by the incorporation of cellulose, either virgin or grafted. Only a little decrease in matrix thermal stability was noticed, this being limited by cellulose grafting. Gas-phase esterification of cellulose improved the filler's dispersion state and filler/matrix interfacial adhesion, as shown by SEM cross-section observations, and limiting the degradation of tensile properties (stress and strain at break). Water vapor permeability, moisture, and liquid water uptake of biocomposites were increased compared to the neat matrix. The increase in thermodynamic parameters was limited in the case of grafted cellulose, principally ascribed to their increased hydrophobicity. However, no significant effect of grafting was noticed regarding diffusion parameters.

13.
Materials (Basel) ; 11(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217047

RESUMEN

This work aims at assessing the impact of two-dimensional particle size distribution (2D-PSD) on the identification of water vapor diffusivity in micrometric size cellulose particles displaying a size aspect ratio lower than 2 and a cylindrical shape. First, different methodologies to obtain the two-dimensional (2D) particle size distribution (diameter versus length) were compared, based on image analysis. Then, experimental sorption kinetics were obtained by using a quartz crystal microbalance (QCM) coupled with a water vapor adsorption system. Diffusivity values were estimated when considering either the 2D-PSD or global descriptors, such as the mean or median diameter and length of particles. Results revealed that the use of an analytical approach when considering the 2D mean-PSD or the median-PSD was the most accurate way to get diffusivity values at the scale of particles in a polydisperse sample of cellulose particles. Following this approach, a water vapor apparent diffusivity of 3.1 × 10-12 ± 2.3 × 10-12 m²·s-1 was found for the considered cellulose sample. Neglecting PSD in diffusivity estimation led to an underestimation of a factor of 2. This procedure could be extended for all the polydisperse samples in order to have an accurate estimation of water vapor diffusivity at the scale of single particles.

14.
Front Nutr ; 5: 121, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564581

RESUMEN

Packaging is an essential element of response to address key challenges of sustainable food consumption on the international scene, which is clearly about minimizing the environmental footprint of packed food. An innovative sustainable packaging aims to address food waste and loss reduction by preserving food quality, as well as food safety issues by preventing food-borne diseases and food chemical contamination. Moreover, it must address the long-term crucial issue of environmentally persistent plastic waste accumulation as well as the saving of oil and food material resources. This paper reviews the major challenges that food packaging must tackle in the near future in order to enter the virtuous loop of circular bio-economy. Some solutions are proposed to address pressing international stakes in terms of food and plastic waste reduction and end-of-life issues of persistent materials. Among potential solutions, production of microbial biodegradable polymers from agro-food waste residues seems a promising route to create an innovative, more resilient, and productive waste-based food packaging economy by decoupling the food packaging industry from fossil feed stocks and permitting nutrients to return to the soil. To respond to the lack of tools and approach to properly design and adapt food packaging to food needs, mathematical simulation, based on modeling of mass transfer and reactions into food/packaging systems are promising tools. The next generation of such modeling and tools should help the food packaging sector to validate usage benefit of new packaging solutions and chose, in a fair and transparent way, the best packaging solution to contribute to the overall decrease of food losses and persistent plastic accumulation.

15.
Carbohydr Polym ; 190: 307-314, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29628251

RESUMEN

This study aims at assessing the use of a quartz crystal microbalance (QCM) coupled with an adsorption system to measure water vapor transfer properties in micrometric size cellulose particles. This apparatus allows measuring successfully water vapor sorption kinetics at successive relative humidity (RH) steps on a dispersion of individual micrometric size cellulose particles (1 µg) with a total acquisition duration of the order of one hour. Apparent diffusivity and water uptake at equilibrium were estimated at each step of RH by considering two different particle geometries in mass transfer modeling, i.e. sphere or finite cylinder, based on the results obtained from image analysis. Water vapor diffusivity values varied from 2.4 × 10-14 m2 s-1 to 4.2 × 10-12 m2 s-1 over the tested RH range (0-80%) whatever the model used. A finite cylinder or spherical geometry could be used equally for diffusivity identification for a particle size aspect ratio lower than 2.

16.
Chemosphere ; 144: 433-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26386433

RESUMEN

In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene. In the light of the obtained results, the mulching material lifespan was questioned in the case of long-term perennial crop such as grapevine. Taking into account their mulching efficiency and biodegradability, the four PBAT-based studied materials are proven to constitute suitable alternatives to the excessively resistant PE material.


Asunto(s)
Agricultura/métodos , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Polipropilenos/química , Vitis/crecimiento & desarrollo , Adipatos/química , Biodegradación Ambiental , Polietileno/química , Propiedades de Superficie , Resistencia a la Tracción
17.
Pest Manag Sci ; 70(11): 1697-705, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24323837

RESUMEN

BACKGROUND: New herbicidal formulations were designed by combining wheat gluten (WG), two montmorillonites (MMTs) (unmodified and organically modified) and a model pesticide (ethofumesate), and their performances were assessed through an integrative study conducted in soil using an experimental methodology with data modelling. RESULTS: All the WG formulations tested were effective in decreasing the apparent diffusivity of ethofumesate in soil in comparison with the non-formulated active substance. The slow-release effect was significantly more pronounced in the presence of the organically modified MMT, confirming the importance of sorption mechanisms to reduce ethofumesate diffusion. The bioassays undertaken on watercress to evaluate herbicidal antigerminating performances showed that all the WG formulations (with or without MMT) were more effective than both the commercial formulation and the non-formulated ethofumesate, whatever the concentration tested. To explain such results, it was proposed that WG formulations would enable ethofumesate to be more available and thus more effective in inhibiting seed germination, as they would be less prone to be leached by water transport due to watering and also less subject to photodegradation. CONCLUSION: The use of pesticide formulations based on wheat gluten and nanoclays appeared to be a promising strategy both to reduce the mobility of pesticides in soil and to protect UV-photosensitive pesticides from photodegradation.


Asunto(s)
Benzofuranos/química , Benzofuranos/farmacología , Lepidium sativum/efectos de los fármacos , Mesilatos/química , Mesilatos/farmacología , Control de Plagas/instrumentación , Fotólisis , Bentonita/química , Difusión , Glútenes/química , Herbicidas/química , Herbicidas/farmacología , Nanoestructuras/química , Control de Plagas/métodos , Suelo/química , Contaminación Química del Agua/prevención & control , Control de Malezas/métodos
18.
J Hazard Mater ; 205-206: 32-9, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22230752

RESUMEN

The potential use of nanoclays for modulating transfer properties of active agents in bio-sourced polymers was explored. For this purpose, new pesticide formulations were designed by combining wheat gluten, ethofumesate (model pesticide) and three montmorillonites (MMT) using a bi-vis extrusion process. Controlled release properties, evaluated through release experiments in water, were discussed in relation to the material formulations and their resulting structure. Partition coefficients were calculated from experimental data and diffusivity values were identified with a Fick's second law mechanistic model. The effect of temperature on release pattern was also evaluated and the activation energy of diffusion was determined. Ethofumesate release was slowed down for all wheat gluten based-formulations as compared to the commercial product. This slow release effect was increased in the presence of hydrophobic MMTs, due to a higher affinity for ethofumesate than for wheat gluten. Contrarily, hydrophilic MMT, displaying a greater affinity for wheat gluten than for ethofumesate seemed ineffective to slow down its release despite the tortuous pathway achieved through a well-exfoliated structure. To conclude, the release mechanisms would be rather governed by pesticide/MMT interactions than MMT/polymer matrix in the case of a hydrophobic pesticide such as ethofumesate and a hydrophilic matrix such as wheat gluten.


Asunto(s)
Bentonita/química , Benzofuranos/química , Glútenes/química , Mesilatos/química , Nanoestructuras/química , Plaguicidas/química , Rastreo Diferencial de Calorimetría , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura , Polímeros/química
19.
Carbohydr Res ; 344(12): 1558-66, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19414173

RESUMEN

The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure.


Asunto(s)
Nanopartículas/química , Almidón/química , Zea mays/química , Amilopectina/química , Cromatografía por Intercambio Iónico , Hidrólisis , Microscopía Electrónica de Transmisión , Modelos Biológicos , Nanopartículas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA