Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Biol ; 24(5): 2132-43, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14966291

RESUMEN

Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.


Asunto(s)
Creatina Quinasa/genética , Elementos de Facilitación Genéticos , Regulación Enzimológica de la Expresión Génica , Genes Reguladores , Proteínas de Homeodominio/metabolismo , Isoenzimas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores , Animales , Células Cultivadas , Embrión de Pollo , Creatina Quinasa/metabolismo , Forma MM de la Creatina-Quinasa , Proteínas de Unión al ADN/metabolismo , Células HeLa , Proteínas de Homeodominio/genética , Humanos , Separación Inmunomagnética , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteómica , Factores de Transcripción/metabolismo , Activación Transcripcional
2.
Methods Mol Biol ; 798: 445-59, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22130853

RESUMEN

ß-galactosidase (ß-gal) is among the most frequently used markers for studying a wide variety of biological mechanisms, e.g., gene expression, cell migration, stem cell conversion to different cell types, and gene silencing. Many of these studies require the histochemical detection of relative ß-gal levels in tissue cross-sections mounted onto glass slides and visualized by microscopy. This is particularly useful for the analysis of promoter activity in skeletal muscle tissue since the ß-gal levels can vary dramatically between different anatomical muscles and myofiber types. The differences in promoter activity can be due to a myofiber's developmental history, innervation, response to normal or experimental physiological signals, and its disease state. It is thus important to identify the individual fiber types within muscle cross-sections and to correlate these with transgene expression signals. Here, we provide a detailed description of how to process and analyze muscle tissues to determine the fiber-type composition and ß-gal transgene expression within cryosections.


Asunto(s)
Genes Reporteros , Fibras Musculares Esqueléticas/metabolismo , beta-Galactosidasa/análisis , Animales , Anticuerpos Monoclonales/biosíntesis , Secciones por Congelación/métodos , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/citología , Coloración y Etiquetado/métodos , beta-Galactosidasa/genética
3.
Skelet Muscle ; 1: 25, 2011 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-21797989

RESUMEN

BACKGROUND: Hundreds of genes, including muscle creatine kinase (MCK), are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. RESULTS: Modulatory region 1 (MR1) is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE) containing a paired E-box/myocyte enhancer factor 2 (MEF2) regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively), but is not required for expression in fast-twitch muscle fibers (types IIb and IId). CONCLUSIONS: In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.

4.
Dev Dyn ; 235(8): 2122-33, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16773658

RESUMEN

Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline that undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they "self-induce" cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin, and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Comunicación Celular , Diferenciación Celular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Biomarcadores , Proteína Morfogenética Ósea 4 , Diferenciación Celular/efectos de los fármacos , Forma de la Célula , Células Cultivadas , Dimetilsulfóxido/farmacología , Endodermo/metabolismo , Endodermo/patología , Regulación de la Expresión Génica , Factor de Transcripción MSX1/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Transducción de Señal , Factores de Tiempo , Tretinoina/farmacología
5.
J Biomed Mater Res ; 60(3): 472-9, 2002 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-11920672

RESUMEN

Cardiac muscle fibers consist of highly aligned cardiomyocytes containing myofibrils oriented parallel to the fiber axis, and successive cardiomyocytes are interconnected at their ends through specialized junctional complexes (intercalated disks). Cell culture studies of cardiac myofibrils and intercalated disks are complicated by the fact that cardiomyocytes become extremely flattened and exhibit disorganized myofibrils and diffuse intercellular junctions with neighboring cells. In this study we sought to direct the organization of cultured cardiomyocytes to more closely resemble that found in vivo. Lanes of laminin 5-50 microm wide were microcontact-printed onto nonadhesive (BSA-coated) surfaces. Adherent cardiomyocytes responded to the spatial constraints by forming elongated, rod-shaped cells whose myofibrils aligned parallel to the laminin lanes. Patterned cardiomyocytes displayed a striking, bipolar localization of the junction molecules N-cadherin and connexin43 that ultrastructurally resembled intercalated disks. When laminin lanes were widely spaced, each lane of cardiomyocytes beat independently, but with narrow-spacing cells bridged between lanes, yielding aligned fields of synchronously beating cardiomyocytes. Similar cardiomyocyte patterns were achieved on the biodegradable polymer PLGA, suggesting that patterned cardiomyocytes could be used in myocardial tissue engineering. Such highly patterned cultures could be used in cell biology and physiology studies, which require accurate reproduction of native myocardial architecture.


Asunto(s)
Diferenciación Celular , Laminina , Fibras Musculares Esqueléticas , Miocardio , Animales , Células Cultivadas , Ácido Láctico , Fibras Musculares Esqueléticas/citología , Miocardio/citología , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polímeros , Ratas , Propiedades de Superficie
6.
J Cell Biochem ; 90(2): 408-23, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14505356

RESUMEN

The role of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) in modulation of vascular cell proliferation is believed to be mediated, in part, by its ability to regulate the activity of certain growth factors through direct binding. In this study, we demonstrate that SPARC does not bind to basic fibroblast growth factor (bFGF/FGF-2) or interfere with complex formation between FGF-2 and its high-affinity FGF receptor-1 (FGFR1), yet both native SPARC and a peptide derived from the C-terminal high-affinity Ca(2+)-binding region of protein significantly inhibit ligand-induced autophosphorylation of FGFR1 (>80%), activation of mitogen-activated protein kinases (MAPKs) (>75%), and DNA synthesis in human microvascular endothelial cells (HMVEC) stimulated by FGF-2 (>80%). We also report that in the presence of FGF-2, a factor which otherwise stimulates myoblast proliferation and the repression of terminal differentiation, both native SPARC and the Ca(2+)-binding SPARC peptide significantly promote (>60%) the differentiation of the MM14 murine myoblast cell line that expresses FGFR1 almost exclusively. Moreover, using heparan sulfate proteoglycan (HSPG)-deficient myeloid cells and porcine aortic endothelial cells (PAECs) expressing chimeric FGFR1, we show that antagonism of FGFR1-mediated DNA synthesis and MAPK activation by SPARC does not require the presence of cell-surface, low-affinity FGF-2 receptors, but can be mediated by an intracellular mechanism that is independent of an interaction with the extracellular ligand-binding domain of FGFR1. We also report that the inhibitory effect of SPARC on DNA synthesis and MAPK activation in endothelial cells is mediated in part (>50%) by activation of protein kinase A (PKA), a known regulator of Raf-MAPK pathway. SPARC thus modulates the mitogenic effect of FGF-2 downstream from FGFR1 by selective regulation of the MAPK signaling cascade.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Osteonectina/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Aorta/metabolismo , Calcio/metabolismo , División Celular , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , ADN/metabolismo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteoglicanos de Heparán Sulfato/deficiencia , Humanos , Ligandos , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Fosforilación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Proteínas Recombinantes/metabolismo , Transducción de Señal , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA