RESUMEN
Phantom Limb Syndrome (PLS) can be defined as the disabling or painful sensation of the presence of a body part that is no longer present after its amputation. Anatomical changes involved in Phantom Limb Syndrome, occurring at peripheral, spinal and brain levels and include the formation of neuromas and scars, dorsal horn sensitization and plasticity, short-term and long-term modifications at molecular and topographical levels. The molecular reorganization processes of Phantom Limb Syndrome include NMDA receptors hyperactivation in the dorsal horn of the spinal column leading to inflammatory mechanisms both at a peripheral and central level. At the brain level, a central role has been recognized for sodium channels, BDNF and adenosine triphosphate receptors. In the paper we discuss current available pharmacological options with a final overview on non-pharmacological options in the pipeline.
Asunto(s)
Miembro Fantasma , Miembro Fantasma/terapia , Miembro Fantasma/fisiopatología , HumanosRESUMEN
Multiple sclerosis is a complex, multifactorial, dysimmune disease prevalent in women. Its etiopathogenesis is extremely intricate, since each risk factor behaves as a variable that is interconnected with others. In order to understand these interactions, sex must be considered as a determining element, either in a protective or pathological sense, and not as one of many variables. In particular, sex seems to highly influence immune response at chromosomal, epigenetic, and hormonal levels. Environmental and genetic risk factors cannot be considered without sex, since sex-based immunological differences deeply affect disease onset, course, and prognosis. Understanding the mechanisms underlying sex-based differences is necessary in order to develop a more effective and personalized therapeutic approach.
Asunto(s)
Esclerosis Múltiple/etiología , Caracteres Sexuales , Humanos , Factores de RiesgoRESUMEN
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Estimulación Transcraneal de Corriente Directa , Humanos , Levodopa/efectos adversos , Antiparkinsonianos/efectos adversos , Estimulación Transcraneal de Corriente Directa/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/etiología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/complicaciones , Plasticidad Neuronal/fisiologíaRESUMEN
Background: It is unclear whether and how COVID-19 vaccination may affect the outcome of patients with acute ischemic stroke (AIS). We investigated this potential association in a retrospective study by comparing previously vaccinated (VAX) versus unvaccinated (NoVAX) stroke patients. Methods: We collected clinical reports for all consecutive AIS patients admitted to our hospital and evaluated the outcome predictors in VAX and NoVAX groups. Adjustments were made for possible confounders in multivariable logistic regression analysis, and adjusted hazard ratios were calculated. Results: A total of 466 AIS patients (287 VAX and 179 NoVAX) were included in this study. The NIHSS score at discharge and mRS score at a 3-month follow-up visit were significantly lower in VAX patients compared to NoVAX patients (p < 0.001). Good outcomes (mRS 0−2) were significantly associated with COVID-19 vaccination before AIS (adjusted hazard ratio, 0.400 [95% CI = 0.216−0.741]). Conclusions: The observation that COVID-19 vaccination can influence the outcome of AIS provides support for further studies investigating the role of immunity in ischemic brain damage.