Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 198: 106993, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972722

RESUMEN

The treatment of bipolar disorder (BD) still remains a challenge. Melatonin (MLT), acting through its two receptors MT1 and MT2, plays a key role in regulating circadian rhythms which are dysfunctional in BD. Using a translational approach, we examined the implication and potential of MT1 receptors in the pathophysiology and psychopharmacology of BD. We employed a murine model of the manic phase of BD (Clock mutant (ClockΔ19) mice) to study the activation of MT1 receptors by UCM871, a selective partial agonist, in behavioral pharmacology tests and in-vivo electrophysiology. We then performed a high-resolution Nuclear Magnetic Resonance study on isolated membranes to characterize the molecular mechanism of interaction of UCM871. Finally, in a cohort of BD patients, we investigated the link between clinical measures of BD and genetic variants located in the MT1 receptor and CLOCK genes. We demonstrated that: 1) UCM871 can revert behavioral and electrophysiological abnormalities of ClockΔ19 mice; 2) UCM871 promotes the activation state of MT1 receptors; 3) there is a significant association between the number of severe manic episodes and MLT levels, depending on the genetic configuration of the MT1 rs2165666 variant. Overall, this work lends support to the potentiality of MT1 receptors as target for the treatment of BD.


Asunto(s)
Trastorno Bipolar , Melatonina , Psicofarmacología , Humanos , Ratones , Animales , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Melatonina/uso terapéutico , Melatonina/farmacología , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/agonistas
2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958700

RESUMEN

Ovarian cancer (OC) is the most lethal of all gynecological cancers. Due to vague symptoms, OC is mostly detected at advanced stages, with a 5-year survival rate (SR) of only 30%; diagnosis at stage I increases the 5-year SR to 90%, suggesting that early diagnosis is essential to cure OC. Currently, the clinical need for an early, reliable diagnostic test for OC screening remains unmet; indeed, screening is not even recommended for healthy women with no familial history of OC for fear of post-screening adverse events. Salivary diagnostics is considered a major resource for diagnostics of the future. In this work, we searched for OC biomarkers (BMs) by comparing saliva samples of patients with various stages of OC, breast cancer (BC) patients, and healthy subjects using an unbiased, high-throughput proteomics approach. We analyzed the results using both logistic regression (LR) and machine learning (ML) for pattern analysis and variable selection to highlight molecular signatures for OC and BC diagnosis and possibly re-classification. Here, we show that saliva is an informative test fluid for an unbiased proteomic search of candidate BMs for identifying OC patients. Although we were not able to fully exploit the potential of ML methods due to the small sample size of our study, LR and ML provided patterns of candidate BMs that are now available for further validation analysis in the relevant population and for biochemical identification.


Asunto(s)
Neoplasias Ováricas , Saliva , Humanos , Femenino , Proteómica/métodos , Modelos Logísticos , Neoplasias Ováricas/diagnóstico , Biomarcadores de Tumor , Aprendizaje Automático
3.
Cell Mol Life Sci ; 79(1): 28, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936031

RESUMEN

Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.


Asunto(s)
Autofagia , Capilares/citología , Radiación Cósmica , Células Endoteliales/efectos de la radiación , Transducción de Señal , Ingravidez , Apoptosis , Biomarcadores/metabolismo , Línea Celular , Supervivencia Celular , Cromosomas Humanos/metabolismo , Citoesqueleto/metabolismo , Daño del ADN , Fluorescencia , Regulación de la Expresión Génica , Genoma Humano , Humanos , Masculino , Mecanotransducción Celular , Modelos Biológicos , Transducción de Señal/efectos de la radiación , Vuelo Espacial , Estrés Fisiológico , Homeostasis del Telómero , Transcriptoma/genética
4.
Molecules ; 26(24)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34946600

RESUMEN

Molecule interacting with CasL 2 (MICAL2), a cytoskeleton dynamics regulator, are strongly expressed in several human cancer types, especially at the invasive front, in metastasizing cancer cells and in the neo-angiogenic vasculature. Although a plethora of data exist and stress a growing relevance of MICAL2 to human cancer, it is worth noting that only one small-molecule inhibitor, named CCG-1423 (1), is known to date. Herein, with the aim to develop novel MICAL2 inhibitors, starting from CCG-1423 (1), a small library of new compounds was synthetized and biologically evaluated on human dermal microvascular endothelial cells (HMEC-1) and on renal cell adenocarcinoma (786-O) cells. Among the novel compounds, 10 and 7 gave interesting results in terms of reduction in cell proliferation and/or motility, whereas no effects were observed in MICAL2-knocked down cells. Aside from the interesting biological activities, this work provides the first structure-activity relationships (SARs) of CCG-1423 (1), thus providing precious information for the discovery of new MICAL2 inhibitors.


Asunto(s)
Anilidas , Benzamidas , Inhibidores Enzimáticos , Proteínas de Microfilamentos , Oxidorreductasas , Bibliotecas de Moléculas Pequeñas , Humanos , Anilidas/química , Anilidas/farmacología , Benzamidas/química , Benzamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Estructura Molecular , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
5.
Hum Mol Genet ; 27(5): 761-779, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281027

RESUMEN

P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.


Asunto(s)
Marcación de Gen/métodos , Vectores Genéticos , Retina/fisiología , Degeneración Retiniana/terapia , Rodopsina/genética , Alelos , Animales , Sistemas CRISPR-Cas , Electroporación/métodos , Fibroblastos , Terapia Genética/métodos , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mutación , ARN Guía de Kinetoplastida , Retina/patología , Degeneración Retiniana/genética
6.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231163

RESUMEN

Capillary endothelial cells are responsible for homeostatic responses to organismic and environmental stimulations. When malfunctioning, they may cause disease. Exposure to microgravity is known to have negative effects on astronauts' physiology, the endothelium being a particularly sensitive organ. Microgravity-related dysfunctions are striking similar to the consequences of sedentary life, bed rest, and ageing on Earth. Among different countermeasures implemented to minimize the effects of microgravity, a promising one is artificial gravity. We examined the effects of hypergravity on human microvascular endothelial cells of dermal capillary origin (HMEC-1) treated at 4 g for 15 min, and at 20 g for 15 min, 3 and 6 h. We evaluated cell morphology, gene expression and 2D motility and function. We found a profound rearrangement of the cytoskeleton network, dose-dependent increase of Focal Adhesion kinase (FAK) phosphorylation and Yes-associated protein 1 (YAP1) expression, suggesting cell stiffening and increased proneness to motility. Transcriptome analysis showed expression changes of genes associated with cardiovascular homeostasis, nitric oxide production, angiogenesis, and inflammation. Hypergravity-treated cells also showed significantly improved motility and function (2D migration and tube formation). These results, expanding our knowledge about the homeostatic response of capillary endothelial cells, show that adaptation to hypergravity has opposite effect compared to microgravity on the same cell type.


Asunto(s)
Capilares/citología , Células Endoteliales/citología , Hipergravedad , Neovascularización Fisiológica , Capilares/fisiología , Línea Celular , Movimiento Celular , Células Endoteliales/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Homeostasis , Humanos , Fosforilación
7.
Ecotoxicol Environ Saf ; 123: 45-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26323371

RESUMEN

Quantum dots (QDs), namely semiconductor nanocrystals, due to their particular optical and electronic properties, have growing applications in device technology, biotechnology and biomedical fields. Nevertheless, the possible threat to human health and the environment have attracted increasing attention as the production and applications of QDs increases rapidly while standard evaluation of safety lags. In the present study we performed proteomic analyses, by means of 2D gel electrophoresis and Surface Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-TOF-MS). We aimed to identify potential biomarkers of exposure to CdSe/ZnS quantum dots. The marine diatom Phaeodactylum tricornutum exposed to 2.5nM QDs was used as a model system. Both 2DE and SELDI showed the presence of differentially expressed proteins. By Principal Component Analysis (PCA) we were able to show that the differentially expressed proteins can discriminate between exposed and not exposed cells. Furthermore, a protein profile specific for exposed cells was obtained by SELDI analysis. To our knowledge, this is the first example of the application of SELDI technology to the analysis of microorganisms used as biological sentinel model of marine environmental pollution.


Asunto(s)
Compuestos de Cadmio/toxicidad , Diatomeas/efectos de los fármacos , Proteoma/análisis , Puntos Cuánticos/toxicidad , Compuestos de Selenio/toxicidad , Sulfuros/toxicidad , Compuestos de Zinc/toxicidad , Diatomeas/crecimiento & desarrollo , Ecotoxicología , Expresión Génica , Modelos Biológicos , Peso Molecular , Análisis de Componente Principal , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
J Pineal Res ; 58(4): 397-417, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25726952

RESUMEN

The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G-protein-coupled receptors, MT1 and MT2 , remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/metabolismo , Animales , Western Blotting , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley
9.
Cells ; 13(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786093

RESUMEN

Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.


Asunto(s)
Retinoides , Animales , Humanos , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Retinaldehído/metabolismo , Retinoides/metabolismo , Vitamina A/metabolismo
10.
Biomed Opt Express ; 15(5): 2767-2779, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855700

RESUMEN

We report experimental results of an interferometric chemical sensor integrated on a silicon chip. The sensor measures refractive index variations of the liquid that contacts exposed spiraled silicon waveguides on one branch of a Mach-Zehnder interferometer. The system requires neither laser tuning nor spectral analysis, but a laser at a fixed wavelength, and a demodulation architecture that includes an internal phase modulator and a real-time processing algorithm based on multitone mixing. Two devices are compared in terms of sensitivity and noise, one at 1550 nm wavelength and TE polarization, and an optimized device at 1310 nm and TM polarization, which shows 3 times higher sensitivity and a limit of detection of 2.24·10-7 RIU.

11.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341423

RESUMEN

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

12.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693246

RESUMEN

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

13.
Can J Physiol Pharmacol ; 91(5): 369-74, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23656416

RESUMEN

We have previously shown that a cytochrome P450 (CYP450) hemoprotein from the 3A subfamily CYP3A13 for the mouse, serves as the sensor in the contraction of the ductus arteriosus in response to increased oxygen tension. In addition, we have identified endothelin-1 (ET-1) as the effector for this response. Here, we examined whether Cyp3a13 gene transfer confers oxygen sensitivity to cultured muscle cells from mouse aorta. Coincidentally, we determined whether the same hemoprotein is normally present in the vessel. Cyp3a13-transfected aortic cells responded to oxygen, whereas no significant response was seen in native cells or in cells transfected with an empty vector. Furthermore, this oxygen effect was curtailed by the ET-1/ETA receptor antagonist BQ-123. We also found that CYP3A13 occurs naturally in aortic tissue and its isolated muscle cells in culture. We conclude that CYP3A13 is involved in oxygen sensing, and its action in the transfected muscle cells of the aorta, as in the native cells of the ductus, takes place through a linkage to ET-1. However, the response of aortic muscle to oxygen, conceivably entailing the presence of CYP3A13 at some special site, is not seen in the native situation, and may instead unfold upon transfection of the parent gene.


Asunto(s)
Aorta Torácica/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Musculares/metabolismo , Oxígeno/farmacología , Animales , Aorta Torácica/citología , Aorta Torácica/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Endotelina-1/genética , Endotelina-1/metabolismo , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Hemoproteínas/genética , Hemoproteínas/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Células Musculares/efectos de los fármacos , Células Musculares/enzimología , Oxígeno/metabolismo , Péptidos Cíclicos/farmacología , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Transfección/métodos
14.
Biomedicines ; 11(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979630

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs with the crucial regulatory functions of gene expression at post-transcriptional level, detectable in cell and tissue extracts, and body fluids. For their stability in body fluids and accessibility to sampling, circulating miRNAs and changes of their concentration may represent suitable disease biomarkers, with diagnostic and prognostic relevance. A solid literature now describes the profiling of circulating miRNA signatures for several tumor types. Among body fluids, saliva accurately reflects systemic pathophysiological conditions, representing a promising diagnostic resource for the future of low-cost screening procedures for systemic diseases, including cancer. Here, we provide a review of literature about miRNAs as potential disease biomarkers with regard to ovarian cancer (OC), with an excursus about liquid biopsies, and saliva in particular. We also report on salivary miRNAs as biomarkers in oncological conditions other than OC, as well as on OC biomarkers other than miRNAs. While the clinical need for an effective tool for OC screening remains unmet, it would be advisable to combine within a single diagnostic platform, the tools for detecting patterns of both protein and miRNA biomarkers to provide the screening robustness that single molecular species separately were not able to provide so far.

15.
APL Bioeng ; 7(1): 016114, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968453

RESUMEN

In this paper, we stimulated M1-like macrophages (obtained from U937 cells) with low-intensity pulsed ultrasound (LIPUS) to lower pro-inflammatory cytokine production. A systematic screening of different frequencies, intensities, duty cycles, and exposure times was performed. The optimal stimulation conditions leading to a marked decrease in the release of inflammatory cytokines were determined to be 38 kHz, 250 mW/cm2, 20%, and 90 min, respectively. Using these parameters, we verified that up to 72 h LIPUS did not affect cell viability, resulting in an increase in metabolic activity and in a reduction of reactive oxygen species (ROS) production. Moreover, we found that two mechanosensitive ion channels (PIEZO1 and TRPV1) were involved in the LIPUS-mediated cytokine release modulation. We also assessed the role of the nuclear factor κB (NF-κB) signaling pathway and observed an enhancement of actin polymerization. Finally, transcriptomic data suggested that the bioeffects of LIPUS treatment occur through the modulation of p38 MAPK signaling pathway.

16.
Sci Rep ; 13(1): 6025, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055439

RESUMEN

In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.


Asunto(s)
Neuroglía , Retina , Retina/metabolismo , Neuroglía/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Técnicas de Cultivo de Célula
17.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865644

RESUMEN

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

18.
J Neurosci ; 31(50): 18439-52, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22171046

RESUMEN

Melatonin activates two brain G-protein coupled receptors, MT(1) and MT(2), whose differential roles in the sleep-wake cycle remain to be defined. The novel MT(2) receptor partial agonist, N-{2-[(3-methoxyphenyl) phenylamino] ethyl} acetamide (UCM765), is here shown to selectively promote non-rapid eye movement sleep (NREMS) in rats and mice. The enhancement of NREMS by UCM765 is nullified by the pharmacological blockade or genetic deletion of MT(2) receptors. MT(2), but not MT(1), knock-out mice show a decrease in NREMS compared to the wild strain. Immunohistochemical labeling reveals that MT(2) receptors are localized in sleep-related brain regions, and notably the reticular thalamic nucleus (Rt). Microinfusion of UCM765 in the Rt promotes NREMS, and its systemic administration induces an increase in firing and rhythmic burst activity of Rt neurons, which is blocked by the MT(2) antagonist 4-phenyl-2-propionamidotetralin. Since developing hypnotics that increase NREMS without altering sleep architecture remains a medical challenge, MT(2) receptors may represent a novel target for the treatment of sleep disorders.


Asunto(s)
Acetamidas/farmacología , Compuestos de Anilina/farmacología , Neuronas/efectos de los fármacos , Receptor de Melatonina MT2/metabolismo , Sueño/efectos de los fármacos , Tálamo/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptor de Melatonina MT2/agonistas , Receptor de Melatonina MT2/genética
20.
Head Neck Pathol ; 16(4): 998-1011, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35524772

RESUMEN

Paragangliomas and pheochromocytomas are rare neuroendocrine tumors, carrying a germ-line mutation in 40% patients. Sclerosis is a rare histological feature in these tumors. We investigated the possible correlations between histological findings, first sclerosis, immunoreactivity for vesicular catecholamine transporters (VMAT1/VMAT2) and patients' genotype in a consecutive series of 57 tumors (30 paragangliomas and 27 pheochromocytomas) from 55 patients. The M-GAPP grading system, sclerosis (0-3 scale) and VMAT1/VMAT2 (0-6 scale) immunoreactivity scores were assessed. Germ-line mutations of Succinate Dehydrogenase genes, RET proto-oncogene and Von Hippel Lindau tumor suppressor gene were searched. A germ-line mutation was found in 25/55 (45.5%) patients, mainly with paraganglioma (N = 14/30, 46,66%). Significant (score ≥ 2) tumor sclerosis was found in 9 (16.1%) tumors, i.e., 7 paragangliomas and 2 pheochromocytomas, most of them (8/9) from patients with a germ-line mutation. M-GAPP score was higher in the mutation status (in 76% of patients involving the SDHx genes, in 12% the RET gene and in the remaining 12% the VHL gene) and in tumors with sclerosis (p < 0.05). Spearman's rank correlation showed a strong correlation of germ-line mutations with M-GAPP (p < 0.0001) and sclerosis (p = 0.0027) scores; a significant correlation was also found between sclerosis and M-GAPP scores (p = 0.029). VMAT1 expression was higher in paragangliomas than in pheochromocytomas (p = 0.0006), the highest scores being more frequent in mutation-bearing patients' tumors (p < 0.01). VMAT2 was highly expressed in all but two negative tumors. Sclerosis and VMAT1 expression were higher in paragangliomas than in pheochromocytomas; tumor sclerosis, M-GAPP and VMAT1 scores were associated to germ-line mutations. Sclerosis might represent a histological marker of tumor susceptibility, prompting to genetic investigations in paragangliomas.


Asunto(s)
Proteínas de Transporte Vesicular de Monoaminas , Humanos , Proteínas de Transporte Vesicular de Monoaminas/genética , Esclerosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA