Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cereb Cortex ; 32(4): 689-708, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34379749

RESUMEN

The olfactory bulb (OB) delivers sensory information to the piriform cortex (PC) and other components of the olfactory system. OB-PC synapses have been reported to express short-lasting forms of synaptic plasticity, whereas long-term potentiation (LTP) of the anterior PC (aPC) occurs predominantly by activating inputs from the prefrontal cortex. This suggests that brain regions outside the olfactory system may contribute to olfactory information processing and storage. Here, we compared functional magnetic resonance imaging BOLD responses triggered during 20 or 100 Hz stimulation of the OB. We detected BOLD signal increases in the anterior olfactory nucleus (AON), PC and entorhinal cortex, nucleus accumbens, dorsal striatum, ventral diagonal band of Broca, prelimbic-infralimbic cortex (PrL-IL), dorsal medial prefrontal cortex, and basolateral amygdala. Significantly stronger BOLD responses occurred in the PrL-IL, PC, and AON during 100 Hz compared with 20 Hz OB stimulation. LTP in the aPC was concomitantly induced by 100 Hz stimulation. Furthermore, 100 Hz stimulation triggered significant nuclear immediate early gene expression in aPC, AON, and PrL-IL. The involvement of the PrL-IL in this process is consistent with its putative involvement in modulating behavioral responses to odor experience. Furthermore, these results indicate that OB-mediated information storage by the aPC is embedded in a connectome that supports valence evaluation.


Asunto(s)
Corteza Piriforme , Olfato , Almacenamiento y Recuperación de la Información , Plasticidad Neuronal/fisiología , Bulbo Olfatorio/fisiología , Corteza Piriforme/fisiología , Olfato/fisiología
2.
Neuropathol Appl Neurobiol ; 48(2): e12780, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837233

RESUMEN

AIMS: Meningiomas are the most frequent primary brain tumours. Recently, knowledge about the molecular drivers underlying aggressive meningiomas has been expanded. A hotspot mutation in the AKT1 gene (AKT1E17K ), which is found in meningiomas at the convexity and especially at the skull base, has been associated with earlier tumour recurrence. METHODS: Here, we analysed the effects of the AKT1E17K mutation and treatment response to the Akt inhibitor AZD5363 in transgenic meningioma cell clones and mouse xenografts modelling convexity or skull base meningiomas. RESULTS: We show that the AKTE17K mutation significantly enhances meningioma cell proliferation and colony size in vitro, resulting in significantly shortened survival times of mice carrying convexity or skull base AKT1E17K xenografts. Treatment of mutant cells or xenografts (150 mg/kg/d) with AZD5363 revealed a significant decrease in cell proliferation and colony size and a prolongation of mouse survival. Western blots revealed activation of AKT1 kinase (phosphorylation at Ser273 and Thr308) by the E17K mutation in human meningioma samples and in our in vitro and in vivo models. CONCLUSIONS: Our data suggest that AKT1E17K mutated meningiomas are a promising selective target for AZD5363.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias Meníngeas/genética , Meningioma/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Neoplasias de la Base del Cráneo/genética , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias Meníngeas/patología , Meningioma/patología , Ratones , Proteínas Proto-Oncogénicas c-akt/genética , Pirimidinas/farmacología , Pirroles/farmacología , Neoplasias de la Base del Cráneo/patología
3.
Neuroimage ; 245: 118769, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34861394

RESUMEN

The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.


Asunto(s)
Ondas Encefálicas/fisiología , Electrocorticografía , Hipocampo/fisiología , Imagen por Resonancia Magnética , Neuroimagen , Acoplamiento Neurovascular/fisiología , Espectroscopía de Protones por Resonancia Magnética , Convulsiones/fisiopatología , Animales , Ondas Encefálicas/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Acoplamiento Neurovascular/efectos de los fármacos , Ratas , Ratas Wistar , Convulsiones/metabolismo
4.
Neuroimage ; 202: 116082, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31425796

RESUMEN

To understand how ongoing neuronal activity affects baseline BOLD signals, neuronal and resultant fMRI responses were simultaneously recorded in the right hippocampus of male rats during continuous low-frequency (2 or 4 Hz) pulse stimulation of the right perforant pathway. Despite continuously increased neuronal activity, BOLD signals only transiently increased in the hippocampus and subsequently returned to either the initial level (2 Hz) or even to a consistently lower level (4 Hz). Whereas the initially transient increase in BOLD signals coincided with an increased spiking of granule cells, the subsequent reduction of BOLD signals was independent of granule cell spiking activity but coincided with persistent inhibition of granule cell excitability, i.e., with reduced postsynaptic activity and prolonged population spike latency. The decline in BOLD signals occurred in the presence of an elevated local cerebral blood volume (CBV), thus the reduction of granule cell excitability is attended by high oxygen consumption. When previous or current stimulations lessen baseline BOLD signals, subsequent short stimulation periods only elicited attenuated BOLD responses, even when actual spiking activity of granule cells was similar. Thus, the quality of stimulus-induced BOLD responses critically depends on the current existing inhibitory activity, which closely relates to baseline BOLD signals. Thus, a meaningful interpretation of stimulus-induced BOLD responses should consider slowly developing variations in baseline BOLD signals; therefore, baseline correction tools should be cautiously used for fMRI data analysis.


Asunto(s)
Hipocampo/fisiología , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Animales , Mapeo Encefálico/métodos , Masculino , Neuroimagen/métodos , Vía Perforante/fisiología , Ratas , Ratas Wistar
5.
Neuroimage ; 188: 347-356, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553915

RESUMEN

Electrical stimulation of right Schaffer collateral in Trpm4-/- knockout and wild type rats were used to study the role of Trpm4 channels for signal processing in the hippocampal formation. Stimulation induced neuronal activity was simultaneously monitored in the CA1 region by in vivo extracellular field recordings and in the entire brain by BOLD fMRI measurements. In wild type and Trpm4-/- knockout rats, consecutive 5 Hz pulse trains elicited similar neuronal responses in the CA1 region and similar BOLD responses in the stimulated right hippocampus. Stimulus-related positive BOLD responses were also found in the left dorsal hippocampus. In contrast to the right dorsal hippocampus, baseline BOLD signals in the left hippocampus significantly decreased during consecutive stimulation trains. Similarly, slowly developing significant declines in baseline BOLD signals, in absence of any positive BOLD responses, were also observed in the right entorhinal, right piriform cortex, right basolateral amygdala and right dorsal striatum whereas baseline BOLD signals remained almost stable in the corresponding left regions. Furthermore, significant declines in baseline BOLD signals were found in the prefrontal cortex and prelimbic/infralimbic cortex. Because significant baseline BOLD declines were only observed in target regions of the right dorsal hippocampus, it might reflect functional connectivity between these regions. In all observed regions the decline in baseline BOLD signals was significantly delayed and less pronounced in Trpm4-/- knockout rats when compared to wild type rats. Thus, either Trpm4 channels are involved in mediating these baseline BOLD shifts or functional connectivity of the hippocampus is impaired in Trpm4-/- knockout rats.


Asunto(s)
Hipocampo/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Región CA1 Hipocampal/diagnóstico por imagen , Región CA1 Hipocampal/fisiología , Estimulación Eléctrica , Electrocorticografía , Femenino , Lateralidad Funcional/fisiología , Hipocampo/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Transgénicas
6.
PLoS Genet ; 12(3): e1005907, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26977770

RESUMEN

Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR)-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB). Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS), a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH) associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH) positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP) at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF) activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko) mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Dendritas/metabolismo , Hipocampo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormona Liberadora de Gonadotropina/metabolismo , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , ARN Mensajero/biosíntesis , Transducción de Señal , Sinapsis/genética , Sinapsis/metabolismo
7.
Neuroimage ; 177: 88-97, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29723641

RESUMEN

Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data.


Asunto(s)
Encéfalo/fisiología , Dopamina/metabolismo , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Acoplamiento Neurovascular/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/fisiología , Estimulación Eléctrica , Electrodos Implantados , Vectores Genéticos , Neuronas/metabolismo , Optogenética , Ratas , Ratas Long-Evans , Ratas Transgénicas , Ratas Wistar , Autoestimulación/fisiología , Técnicas Estereotáxicas , Tomografía Computarizada de Emisión de Fotón Único , Área Tegmental Ventral/diagnóstico por imagen , Área Tegmental Ventral/metabolismo
8.
Neuroimage ; 152: 119-129, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28259782

RESUMEN

fMRI was used to study late effects of dopamine D1/5 receptor activation on hippocampal signal processing and signal propagation to several target regions. The dopamine D1/5 receptor agonists SKF83959 and SKF38393 were intraperitoneally applied without, immediately before or 7 days after electrical stimulation of the right perforant pathway with bursts of high-frequency pulses. Control animals received a 0.9% NaCl solution. One day after D1/5 receptor activation, the perforant pathway was stimulated and the induced BOLD responses in the right hippocampus and its target regions, left hippocampus (l-HC) and medial prefrontal cortex (mPFC), were measured. Depending on the temporal relation between dopamine receptor activation and the first perforant pathway stimulation the induced BOLD response pattern differed. When applied without concurrent perforant pathway stimulation, the agonists caused region-selective increases in the induced BOLD responses: the effect of SKF83959 was evident in the mPFC whereas that of SKF38393 was confined to the l-HC. When applied in conjunction with perforant pathway stimulation, either agonist caused increased BOLD responses in both regions. In contrast, when applied 7 days after perforant pathway stimulation, neither SKF83959 nor SKF38393 modified the BOLD responses in the mPFC or l-HC 1day later. These findings suggest that (i) activation of dopamine D1/5 receptors alone is sufficient to modify stimulus-induced BOLD responses in target regions of the right hippocampus 24h later, and (ii), the history of previous stimulations crucially affects the impact of dopamine receptor activation on stimulus-induced BOLD responses.


Asunto(s)
Hipocampo/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D5/fisiología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/administración & dosificación , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/análogos & derivados , Animales , Mapeo Encefálico , Agonistas de Dopamina/administración & dosificación , Estimulación Eléctrica , Hipocampo/efectos de los fármacos , Imagen por Resonancia Magnética , Masculino , Vía Perforante/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas Wistar , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas
9.
J Neurosci ; 34(25): 8529-45, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24948808

RESUMEN

Paired-pulse stimulation of the perforant pathway was used to study the relation between granular cell activity and the resultant fMRI response in the rat dentate gyrus. By varying the interpulse interval (IPI), paired-pulse stimulations caused: a depression (20 ms IPI), a facilitation (100 ms IPI), a mixture of depression and facilitation (30 ms IPI), or no change (500 ms IPS) in the second response. Eight identical paired pulses were applied during one stimulation train and the evoked field potentials and generated fMRI responses were measured simultaneously. Application of consecutive stimulation trains caused time-dependent variations in electrophysiological and fMRI responses, which were characteristic for each stimulus protocol. Depending on the IPI, the magnitude of the fMRI response either correlated strongly with or was apparently unrelated to the spiking or postsynaptic activity of the granular cells. A strong relation between spiking activity and resultant fMRI response was only found when the stimulation protocol caused an increase in the recorded population spike latency. If the latency was decreased, the fMRI response was more closely related to the applied input activity. Perforant pathway fibers monosynaptically activate granular cells, so variations in population spike latencies reflect changes in their intrinsic excitability. Therefore, during increased intrinsic excitability, signaling cascades upstream of the granular cells determine the fMRI response, whereas granular cell activity-related mechanisms control the fMRI response during decreased intrinsic excitability.


Asunto(s)
Potenciales de Acción/fisiología , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Vía Perforante/fisiología , Animales , Giro Dentado/citología , Estimulación Eléctrica/métodos , Electrodos Implantados , Imagen por Resonancia Magnética/métodos , Masculino , Vía Perforante/citología , Ratas , Ratas Wistar
10.
EMBO J ; 30(24): 4955-69, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926968

RESUMEN

Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.


Asunto(s)
Neuronas/fisiología , Neuropéptidos/fisiología , Fosfoproteínas/fisiología , Vesículas Sinápticas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Dinaminas/metabolismo , Endocitosis , Hipocampo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Neuronas/ultraestructura , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Retina/fisiología , Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Convulsiones/genética , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura
11.
Neuroimage ; 103: 171-180, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25234116

RESUMEN

Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Optogenética/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Encéfalo/irrigación sanguínea , Masculino , Ratones , Ratones Endogámicos C57BL , Radiofármacos , Recompensa , Autoestimulación , Exametazima de Tecnecio Tc 99m
12.
J Magn Reson Imaging ; 39(5): 1126-35, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24115505

RESUMEN

PURPOSE: To compare the sensitivity and specificity of phase imaging (PI) with other magnetic resonance imaging (MRI) methods in lesion detection in rats with experimental autoimmune encephalomyelitis (EAE), as an animal model for multiple sclerosis (MS). MATERIALS AND METHODS: EAE was induced in rats (n = 14) by subcutaneous (s.c.) injection of myelin basic protein (MBP) and complete Freund's adjuvant (CFA). Control animals (n = 4) were given an s.c. injection of phosphate-buffered saline mixed with CFA. The development of local inflammatory processes, demyelinations, and blood-brain barrier (BBB) disruptions were monitored over 7 weeks in a 4.7T animal scanner by T1-, T2-, T2*-weighted images, magnetization transfer, and PI in the presence or absence of very small superparamagnetic iron oxide particles (VSOP) and confirmed by immunostaining using CD31, CD68, MBP, and albumin antibodies and Gallyas silver staining. RESULTS: EAE rats developed time-dependent local inflammations and BBB disruptions but no clear demyelinizations. In histological stainings these processes were trackable as accumulations of phagocytic monocytes and extravasal albumin. In MRI without application of VSOP inflammatory processes were not detectable. MRI in the presence of VSOP revealed inflammatory processes by the appearance of hypointense spots (hs). The specificity of PI to detect hs was similar to T1- and T2*-weighted images The calculated sensitivity was less than in corresponding T2*-weighted images. CONCLUSION: The diagnostic use of PI without VSOP as contrast agent to detect lesions is not recommended at field strength of 4.7T or lower.


Asunto(s)
Encéfalo/patología , Encefalomielitis Autoinmune Experimental/patología , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita , Esclerosis Múltiple/patología , Animales , Medios de Contraste , Masculino , Ratas , Ratas Endogámicas Lew , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
Neuroimage ; 64: 43-60, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22982727

RESUMEN

Signal processing in the hippocampal formation and resultant signal propagation to cortical and subcortical structures during high frequency stimulation (i.e. 100 Hz) of the perforant pathway was studied in medetomidine anesthetized rats by functional magnetic resonance imaging (fMRI) and electrophysiological recordings. The perforant pathway was stimulated with bursts of 20 pulses, one burst per second, or with continuously applied pulses. The stimulation duration was adjusted to 8 s (short) or 30 s (long). In general, extending the stimulation duration only caused a local spreading of the fMRI response, but no changes in the magnitude of the fMRI response. This was in agreement with the electrophysiological responses, which also remained unchanged. In contrast, increasing the number of pulses in one stimulus train (i.e. changing from burst to continuous stimulation), caused both spreading and an increase in local fMRI responses that were accompanied by an altered neuronal response pattern. Continuous stimulation also triggered additional fMRI responses in the septum, nucleus accumbens, anterior cingulate cortex/medial prefrontal cortex, and ventral tegmental area/substantia nigra. The appearance of fMRI responses outside the hippocampal formation required at least 3 consecutive stimulation trains, characterized by region specific hemodynamic response functions. Thus, once triggered, continuous stimulation caused a sequential appearance in fMRI responses starting in the hippocampal formation, followed by signal changes in the ventral tegmental area/substantia nigra and anterior cingulate cortex/medial prefrontal cortex and eventually in the nucleus accumbens. These results indicate that high frequency stimulation of the hippocampal formation can activate the mesolimbic pathway, provided that repetitive stimulations are applied.


Asunto(s)
Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Vía Perforante/fisiología , Animales , Masculino , Ratas , Ratas Wistar
14.
Neuroimage ; 75: 213-227, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23507376

RESUMEN

Functional magnetic resonance imaging and electrophysiology were combined to monitor blood oxygen level dependent (BOLD) signals in the entire rat brain and neuronal activities in the dentate gyrus during electrical stimulation of the right perforant pathway. In naïve, medetomidine sedated animals, stimulation of the fiber bundle with 15 trains (i.e. 8 bursts of 20 pulses given with 10 ms intervals, one burst per second, pulse width 0.2 ms) generated significant BOLD responses in the right hippocampal formation and the left entorhinal cortex. The stimulation condition also caused changes in the synaptic efficacy of perforant pathway granular cell synapses that lasted for at least one day. Rerun of the same experiment one day later resulted in a significantly increased electrophysiological response in the dentate gyrus and an increase of the BOLD response in the entire hippocampal formation. Consequently, long-lasting changes in synaptic efficacy go along with changes in the generated BOLD response. Additional electrical stimulations of the perforant pathway in the awake animal between the two fMRI experiments caused in the second fMRI measurement an increased BOLD response in the hippocampal formation and an appearance of significant BOLD responses in target regions of the hippocampus, such as the septum, nucleus accumbens (NAcc), and anterior cingulate cortex/medial prefrontal cortex/motor cortex (ACC/mPFC/MC) regions. Consequently, the efficacy of signal processing in and propagation through the hippocampus can be monitored by variations of the BOLD response in target regions of the hippocampus. Using the electrical perforant pathway stimulations as conditioned stimulus for an active avoidance task (shuttle box) caused a further spreading of the BOLD response in the hippocampus formation, septum and ACC/mPFC/MC but not in the NAcc. In addition, the magnitude of the BOLD response in the trained animals was further increased in the right and left hippocampus and the ACC/mPFC/MC region but not in the septum. These results demonstrate that in addition to general stimulus parameter the behavioral relevance of the stimulus controls the quality of the generated BOLD response.


Asunto(s)
Reacción de Prevención/fisiología , Mapeo Encefálico/métodos , Hipocampo/fisiología , Vía Perforante/fisiología , Animales , Condicionamiento Clásico , Estimulación Eléctrica , Electrofisiología , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Wistar
15.
Neuroimage ; 77: 14-25, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23558098

RESUMEN

To study how a synchronized activation of two independent pathways affects the fMRI response in a common targeted brain region, blood oxygen dependent (BOLD) signals were measured during electrical stimulation of the right medial forebrain bundle (MFB), the right perforant pathway (PP) and concurrent stimulation of the two fiber systems. Repetitive electrical stimulations of the MFB triggered significant positive BOLD responses in the nucleus accumbens (NAcc), septum, anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), ventral tegmental area/substantia nigra (VTA/SN), right entorhinal cortex (EC) and colliculus superior, which, in general, declined during later stimulation trains. At the same time, negative BOLD responses were observed in the striatum. Thus, the same stimulus caused region-specific hemodynamic responses. An identical electrical stimulation of the PP generated positive BOLD responses in the right dentate gyrus/hippocampus proper/subiculum (DG/HC), the right entorhinal cortex and the left entorhinal cortex, which remained almost stable during consecutive stimulation trains. Co-stimulation of the two fiber systems resulted in an additive activation pattern, i.e., the BOLD responses were stronger during the stimulation of the two pathways than during the stimulation of only one pathway. However, during the simultaneous stimulation of the two pathways, the development of the BOLD responses to consecutive trains changed. The BOLD responses in regions that were predominantly activated by MFB stimulation (i.e., NAcc, septum and ACC/mPFC) did not decline as fast as during pure MFB stimulation, thus an additive BOLD response was only observed during later trains. In contrast, in the brain regions that were predominantly activated by PP stimulation (i.e., right EC, DG/HC), co-stimulation of the MFB only resulted in an additive effect during early trains but not later trains. Consequently, the development of the BOLD responses during consecutive stimulations indicates the presence of an interaction between the two pathways in a target region, whereas the observed averaged BOLD responses do not.


Asunto(s)
Mapeo Encefálico , Haz Prosencefálico Medial/fisiología , Núcleo Accumbens/fisiología , Vía Perforante/fisiología , Corteza Prefrontal/fisiología , Animales , Estimulación Eléctrica , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Wistar
16.
J Cereb Blood Flow Metab ; : 271678X231221039, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087890

RESUMEN

We combined electrical perforant pathway stimulation with electrophysiological and fMRI recordings in the hippocampus to investigate the effects of neuronal afterdischarges (nAD) on subsequent fMRI BOLD signals in the presence of isoflurane and medetomidine. These two drugs already alter basal hemodynamics in the hippocampus, with isoflurane being mildly vasodilatory and medetomidine being mildly vasoconstrictive. The perforant pathway was stimulated once for 8 seconds with either continuous 20 Hz pulses (continuous stimulation) or 8 bursts of 20 high-frequency pulses (burst stimulation). Burst stimulation in the presence of medetomidine elicited long-lasting nAD that coincided with a brief positive BOLD response and a subsequent long-lasting decrease in BOLD signals. Under isoflurane, this stimulation elicited only short-lasting nAD and only a short-lasting decline in BOLD signals. In contrast, continuous stimulation under isoflurane and medetomidine caused a similar duration of nAD. Under isoflurane, this caused only a sharp and prolonged decline in BOLD signals, whereas under medetomidine, again, only a brief positive BOLD response was elicited, followed by a shorter and moderate decline in BOLD signals. Our results suggest that nAD simultaneously activate different neurovascular coupling mechanisms that then independently alter local hemodynamics in the hippocampus, resulting in an even more complex neurovascular coupling mechanism.

17.
J Cereb Blood Flow Metab ; 42(2): 364-380, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34590894

RESUMEN

Repeated high-frequency pulse-burst stimulations of the rat perforant pathway elicited positive BOLD responses in the right hippocampus, septum and prefrontal cortex. However, when the first stimulation period also triggered neuronal afterdischarges in the hippocampus, then a delayed negative BOLD response in the prefrontal cortex was generated. While neuronal activity and cerebral blood volume (CBV) increased in the hippocampus during the period of hippocampal neuronal afterdischarges (h-nAD), CBV decreased in the prefrontal cortex, although neuronal activity did not decrease. Only after termination of h-nAD did CBV in the prefrontal cortex increase again. Thus, h-nAD triggered neuronal activity in the prefrontal cortex that counteracted the usual neuronal activity-related functional hyperemia. This process was significantly enhanced by pilocarpine, a mACh receptor agonist, and completely blocked when pilocarpine was co-administered with scopolamine, a mACh receptor antagonist. Scopolamine did not prevent the formation of the negative BOLD response, thus mACh receptors modulate the strength of the negative BOLD response.


Asunto(s)
Circulación Cerebrovascular , Hipocampo , Neuronas/metabolismo , Vía Perforante , Animales , Hipocampo/irrigación sanguínea , Hipocampo/metabolismo , Hiperemia/metabolismo , Masculino , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Vía Perforante/irrigación sanguínea , Vía Perforante/metabolismo , Pilocarpina/farmacología , Corteza Prefrontal/irrigación sanguínea , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Escopolamina/farmacología
18.
Brain Pathol ; 32(2): e13015, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35213083

RESUMEN

Anatomical cross-sectional imaging methods such as contrast-enhanced MRI and CT are the standard for the delineation, treatment planning, and follow-up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non-invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion-weighted imaging, diffusion-weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular-genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Inteligencia Artificial , Humanos , Neoplasias Meníngeas/diagnóstico por imagen , Meningioma/diagnóstico por imagen , Neuroimagen , Tomografía de Emisión de Positrones
19.
Cell Tissue Res ; 346(1): 11-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21935677

RESUMEN

Mice mutant for the presynaptic protein Bassoon develop epileptic seizures and an altered pattern of neuronal activity that is accompanied by abnormal enlargement of several brain structures, with the strongest size increase in hippocampus and cortex. Using manganese-enhanced magnetic resonance imaging, an abnormal brain enlargement was found, which is first detected in the hippocampus 1 month after birth and amounts to an almost 40% size increase of this structure after 3 months. Stereological quantification of cell numbers revealed that enlargement of the dentate gyrus and the hippocampus proper is associated with larger numbers of principal neurons and of astrocytes. In search for the underlying mechanisms, an approximately 3-fold higher proportion of proliferation and survival of new-born cells in the dentate gyrus was found to go hand in hand with similarly larger numbers of doublecortin-positive cells and reduced numbers of apoptotic cells in the dentate gyrus and the hippocampus proper. Enlargement of the hippocampus and of other forebrain structures was accompanied by increased levels of brain-derived neurotrophic factor (BDNF). These data show that hippocampal overgrowth in Bassoon-mutant mice arises from a dysregulation of neurogenesis and apoptosis that might be associated with unbalanced BDNF levels.


Asunto(s)
Apoptosis/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Giro Dentado/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Animales , Astrocitos/metabolismo , Proliferación Celular , Supervivencia Celular/fisiología , Giro Dentado/diagnóstico por imagen , Proteínas de Dominio Doblecortina , Imagen por Resonancia Magnética , Ratones , Ratones Mutantes , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Tamaño de los Órganos/genética , Radiografía
20.
J Neurosci Methods ; 356: 109141, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33753124

RESUMEN

BACKGROUND: Alterations of the neurofibromatosis type 2 gene (NF2) occur in more than fifty percent of sporadic meningiomas. Meningiomas develop frequently in the setting of the hereditary tumor syndrome NF2. Investigation of potential drug-based treatment options has been limited by the lack of appropriate in vitro and in vivo models. NEW METHODS: Using Crispr/Cas gene editing, of the malignant meningioma cell line IOMM-Lee, we generated a pair of cell clones characterized by either stable knockout of NF2 and loss of the protein product merlin or retained merlin protein (transfected control without gRNA). RESULTS: IOMM-Lee cells lacking NF2 showed reduced apoptosis and formed bigger colonies compared to control IOMM-Lee cells. Treatment of non-transfected IOMM-Lee cells with the focal adhesion kinase (FAK) inhibitor GSK2256098 resulted in reduced colony sizes. Orthotopic mouse xenografts showed the formation of convexity tumors typical for meningiomas with NF2-depleted and control cells. COMPARISON WITH EXISTING METHODS: No orthotopic meningioma models with genetically-engineered cell pairs are available so far. CONCLUSION: Our model based on Crispr/Cas-based gene editing provides paired meningioma cells suitable to study functional consequences and therapeutic accessibility of NF2/merlin loss.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Animales , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Ratones , Neurofibromina 2/genética , Neurofibromina 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA