Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genome Res ; 29(9): 1495-1505, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439690

RESUMEN

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/clasificación , Factores de Virulencia/genética , Secuenciación Completa del Genoma/métodos , Animales , Bovinos , Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/genética , Evolución Molecular , Redes Reguladoras de Genes , Genoma Bacteriano , Humanos , Filogenia , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/patogenicidad , Simbiosis
2.
Food Microbiol ; 63: 228-238, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28040174

RESUMEN

Six major Shiga toxin producing Escherichia coli (STEC) serogroups: O26, O103, O145, O111, O121, and O45 have been declared as adulterants in federally inspected raw beef in the USA effective June 4th, 2012 in addition to the routinely tested STEC O157: H7. This study tests a real-time multiplex PCR assay and pooling of the samples to optimize the detection and quantification (prevalence and contamination) of six major non-O157 STEC, regardless of possessing Shiga toxins. To demonstrate the practicality, one large-scale slaughter plant (Plant LS) and one small-scale slaughter plant (Plant SS) located in the Mid-Western USA were sampled, in 2011, before the establishment of 2013 USDA laboratory protocols. Carcasses were sampled at consecutive intervention stations and beef trimmings were collected at the end of the fabrication process. Plant SS had marginally more contaminated samples than Plant LS (p-value 0.08). The post-hide removal wash, steam pasteurization, and lactic acid (≤5%) spray used in Plant LS seemed to reduce the six serogroups effectively, compared to the hot-water wash and 7-day chilling at Plant SS. Compared to the culture isolation methods, quantification of the non-O157 STEC using real-time PCR may be an efficient way to monitor the efficacy of slaughter line interventions.


Asunto(s)
Proteínas de Escherichia coli/genética , Carne Roja/microbiología , Serogrupo , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Mataderos , Animales , Bovinos , Recuento de Colonia Microbiana , Heces/microbiología , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Escherichia coli Shiga-Toxigénica/genética , Estados Unidos
3.
Mol Cell Probes ; 25(5-6): 222-30, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21925264

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC), including O157 and non-O157 serotypes are significant foodborne pathogens that require sensitive and discriminatory methods for detection and characterization. There are numerous PCR-based methods for the detection of EHEC virulence factors, but the time and cost involved with large-scale screening efforts and population level analyses have limited the size and scope of studies. Recent technological advancements have combined the high-throughput performance of the microarray with the specificity and sensitivity of real-time qPCR to make large-scale screening efforts both time- and cost-effective. This study identified and evaluated a panel of 28 genetic markers including known virulence and regulatory genes, O-antigen genes, and select prophage regions of O157 and non-O157 EHEC that can be used with high-throughput PCR to virulotype, serotype, and preliminarily subtype large numbers of isolates. The PCR assays for the target genes were shown to be robust using multiple extraction methods and PCR platforms. Preliminary quantitative PCR showed that an EHEC concentration of 10(4) CFU/ml or lower could be detected, with a linear range of detection over five to six orders of magnitude. The panel of 28 target genes has the potential to become an integral tool in outbreak, environmental, and genetic investigations of EHEC.


Asunto(s)
Antígenos Bacterianos/análisis , Técnicas de Tipificación Bacteriana , Infecciones por Escherichia coli/diagnóstico , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Antígenos O/análisis , Antígenos Bacterianos/genética , Colifagos/genética , Infecciones por Escherichia coli/genética , Escherichia coli O157/clasificación , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/virología , Marcadores Genéticos , Ensayos Analíticos de Alto Rendimiento , Humanos , Límite de Detección , Antígenos O/genética , Profagos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Prev Vet Med ; 117(1): 140-8, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25112682

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157 are important foodborne pathogens whose major reservoir are asymptomatic cattle. There is evidence suggesting that nonpathogenic E. coli and bacteriophages in the gastro-intestinal tract can influence the pathogenicity of EHEC O157. The factors contributing to the onset and persistence of shedding EHEC O157 in cattle are not completely elucidated. This study used Bayesian network analysis to identify genetic markers of generic E. coli associated with shedding of EHEC O157 in cattle from data generated during an oral experimental challenge study in 4 groups of 6 steers inoculated with three different EHEC O157 strains. The quantification of these associations was accomplished using mixed effects logistic regression. The results showed that the concurrent presence of generic E. coli carrying the prophage marker R4-N and the virulence marker stx2 increased the odds of the onset of EHEC O157 shedding. The presence of prophage markers z2322 and X011C increased, while C1.N decreased the odds of shedding EHEC O157 two days later. A significant antagonist interaction effect between the presence of the virulence marker stx2 on the day of shedding EHEC O157 and two days before shedding was also found. In terms of the persistence of EHEC O157 shedding, the presence of prophage marker R4-N (OR=16, and 95% confidence interval (CI): 1.1, 252) was found to increase the odds of stopping EHEC O157 shedding, whereas prophage marker C1.N (OR=0.16, CI: 0.03, 0.7) and the enterohemolysin gene hly (OR=0.03, CI: 0.001, 0.8) were found to significantly decrease the odds of stopping EHEC O157 shedding. In conclusion, the study found that the presence of certain genetic markers in the generic E. coli genome can influence the pathogenicity of EHEC O157.


Asunto(s)
Portador Sano , Enfermedades de los Bovinos/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli/clasificación , Escherichia coli/genética , Animales , Teorema de Bayes , Bovinos , Infecciones por Escherichia coli/microbiología , Marcadores Genéticos , Modelos Logísticos
5.
J Food Prot ; 75(4): 643-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22488051

RESUMEN

Escherichia coli O26, O45, O103, O111, O121, O145, and O157 are the predominant Shiga toxin-producing E. coli (STEC) serogroups implicated in outbreaks of human foodborne illness worldwide. The increasing prevalence of these pathogens has important public health implications. Beef products have been considered a main source of foodborne human STEC infections. Robust and sensitive methods for the detection and characterization of these pathogens are needed to determine prevalence and incidence of STEC in beef processing facilities and to improve food safety interventions aimed at eliminating STEC from the food supply. This study was conducted to develop Taqman real-time multiplex PCR assays for the screening and rapid detection of the predominant STEC serogroups associated with human illness. Three serogroup-specific assays targeted the O-antigen gene clusters of E. coli O26 (wzy), O103 (wzx), and O145 (wzx) in assay 1, O45 (wzy), O111 (manC), and O121 (wzx) in assay 2, and O157 (rfbE) in assay 3. The uidA gene also was included in the serogroup-specific assays as an E. coli internal amplification control. A fourth assay was developed to target selected virulence genes for Shiga toxin (stx(1) and stx(2)), intimin (eae), and enterohemolysin (ehxA). The specificity of the serogroup and virulence gene assays was assessed by testing 100 and 62 E. coli strains and non-E. coli control strains, respectively. The assays correctly detected the genes in all strains examined, and no cross-reactions were observed, representing 100 % specificity. The detection limits of the assays were 10(3) or 10(4) CFU/ml for pure cultures and artificially contaminated fecal samples, and after a 6-h enrichment period, the detection limit of the assays was 10(0) CFU/ml. These results indicate that the four real-time multiplex PCR assays are robust and effective for the rapid and reliable detection of the seven predominant STEC serogroups of major public health concern and the detection of their virulence genes.


Asunto(s)
Contaminación de Alimentos/análisis , Productos de la Carne/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Toxina Shiga/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Microbiología de Alimentos , Humanos , Prevalencia , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA