Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 109(8): 2606-2618, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385272

RESUMEN

Multiple myeloma (MM) remains incurable due to disease relapse and drug resistance. Notch signals from the tumor microenvironment (TME) confer chemoresistance, but the cellular and molecular mechanisms are not entirely understood. Using clinical and transcriptomic datasets, we found that NOTCH3 is upregulated in CD138+ cells from newly diagnosed MM (NDMM) patients compared to healthy individuals and increased in progression/relapsed MM (PRMM) patients. Further, NDMM patients with high NOTCH3 expression exhibited worse responses to bortezomib (BOR)-based therapies. Cells of the TME, including osteocytes, upregulated NOTCH3 in MM cells and protected them from apoptosis induced by BOR. NOTCH3 activation (NOTCH3OE) in MM cells decreased BOR anti-MM efficacy and its ability to improve survival in in vivo myeloma models. Molecular analyses revealed that NDMM and PRMM patients with high NOTCH3 exhibit CXCL12 upregulation. TME cells upregulated CXCL12 and activated the CXCR4 pathway in MM cells in a NOTCH3-dependent manner. Moreover, genetic or pharmacologic inhibition of CXCL12 in NOTCH3OE MM cells restored sensitivity to BOR regimes in vitro and in human bones bearing NOTCH3OE MM tumors cultured ex vivo. Our clinical and preclinical data unravel a novel NOTCH3-CXCL12 pro-survival signaling axis in the TME and suggest that osteocytes transmit chemoresistance signals to MM cells.


Asunto(s)
Quimiocina CXCL12 , Resistencia a Antineoplásicos , Mieloma Múltiple , Receptor Notch3 , Transducción de Señal , Microambiente Tumoral , Animales , Humanos , Ratones , Bortezomib/farmacología , Bortezomib/uso terapéutico , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Mieloma Múltiple/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Transducción de Señal/efectos de los fármacos
2.
Res Sq ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38558984

RESUMEN

Breast cancer bone metastases increase fracture risk and are a major cause of morbidity and mortality among women. Upon colonization by tumor cells, the bone microenvironment undergoes profound reprogramming to support cancer progression that disrupts the balance between osteoclasts and osteoblasts, leading to bone lesions. Whether such reprogramming affects matrix-embedded osteocytes remains poorly understood. Here, we demonstrate that osteocytes in breast cancer bone metastasis develop premature senescence and a distinctive senescence-associated secretory phenotype (SASP) that favors bone destruction. Single-cell RNA sequencing identified osteocytes from mice with breast cancer bone metastasis enriched in senescence and SASP markers and pro-osteoclastogenic genes. Using multiplex in situ hybridization and AI-assisted analysis, we detected osteocytes with senescence-associated distension of satellites, telomere dysfunction, and p16Ink4a expression in mice and patients with breast cancer bone metastasis. In vitro and ex vivo organ cultures showed that breast cancer cells promote osteocyte senescence and enhance their osteoclastogenic potential. Clearance of senescent cells with senolytics suppressed bone resorption and preserved bone mass in mice with breast cancer bone metastasis. These results demonstrate that osteocytes undergo pathological reprogramming by breast cancer cells and identify osteocyte senescence as an initiating event triggering bone destruction in breast cancer metastases.

3.
Cancers (Basel) ; 15(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174109

RESUMEN

The tumor microenvironment plays a central role in the onset and progression of cancer in the bone. Cancer cells, either from tumors originating in the bone or from metastatic cancer cells from other body systems, are located in specialized niches where they interact with different cells of the bone marrow. These interactions transform the bone into an ideal niche for cancer cell migration, proliferation, and survival and cause an imbalance in bone homeostasis that severely affects the integrity of the skeleton. During the last decade, preclinical studies have identified new cellular mechanisms responsible for the dependency between cancer cells and bone cells. In this review, we focus on osteocytes, long-lived cells residing in the mineral matrix that have recently been identified as key players in the spread of cancer in bone. We highlight the most recent discoveries on how osteocytes support tumor growth and promote bone disease. Additionally, we discuss how the reciprocal crosstalk between osteocytes and cancer cells provides the opportunity to develop new therapeutic strategies to treat cancer in the bone.

4.
BMC Res Notes ; 13(1): 400, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854782

RESUMEN

OBJECTIVE: Soft tissue manual therapies are commonly utilized by osteopathic physicians, chiropractors, physical therapists and massage therapists. These techniques are predicated on subjecting tissues to biophysical mechanical stimulation but the cellular and molecular mechanism(s) mediating these effects are poorly understood. Previous studies established an in vitro model system for examining mechanical stimulation of dermal fibroblasts and established that cyclical strain, intended to mimic overuse injury, induces secretion of numerous pro-inflammatory cytokines. Moreover, mechanical strain intended to mimic soft tissue manual therapy reduces strain-induced secretion of pro-inflammatory cytokines. Here, we sought to partially confirm and extend these reports and provide independent corroboration of prior results. RESULTS: Using cultures of primary human dermal fibroblasts, we confirm cyclical mechanical strain increases levels of IL-6 and adding long-duration stretch, intended to mimic therapeutic soft tissue stimulation, after cyclical strain results in lower IL-6 levels. We also extend the prior work, reporting that long-duration stretch results in lower levels of IL-8. Although there are important limitations to this experimental model, these findings provide supportive evidence that therapeutic soft tissue stimulation may reduce levels of pro-inflammatory cytokines. Future work is required to address these open questions and advance the mechanistic understanding of therapeutic soft tissue stimulation.


Asunto(s)
Citocinas , Manipulaciones Musculoesqueléticas , Células Cultivadas , Fibroblastos , Humanos , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA