Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7769, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237515

RESUMEN

Histone H3-mutant gliomas are deadly brain tumors characterized by a dysregulated epigenome and stalled differentiation. In contrast to the extensive datasets available on tumor cells, limited information exists on their tumor microenvironment (TME), particularly the immune infiltrate. Here, we characterize the immune TME of H3.3K27M and G34R/V-mutant gliomas, and multiple H3.3K27M mouse models, using transcriptomic, proteomic and spatial single-cell approaches. Resolution of immune lineages indicates high infiltration of H3-mutant gliomas with diverse myeloid populations, high-level expression of immune checkpoint markers, and scarce lymphoid cells, findings uniformly reproduced in all H3.3K27M mouse models tested. We show these myeloid populations communicate with H3-mutant cells, mediating immunosuppression and sustaining tumor formation and maintenance. Dual inhibition of myeloid cells and immune checkpoint pathways show significant therapeutic benefits in pre-clinical syngeneic mouse models. Our findings provide a valuable characterization of the TME of oncohistone-mutant gliomas, and insight into the means for modulating the myeloid infiltrate for the benefit of patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Mutación , Células Mieloides , Microambiente Tumoral , Animales , Glioma/genética , Glioma/inmunología , Glioma/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Células Mieloides/metabolismo , Células Mieloides/inmunología , Histonas/metabolismo , Histonas/genética , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Humanos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual
2.
Sci Rep ; 12(1): 5772, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388090

RESUMEN

DNA methylation is a central epigenetic mark that has diverse roles in gene regulation, development, and maintenance of genome integrity. 5 methyl cytosine (5mC) can be interrogated at base resolution in single cells by using bisulfite sequencing (scWGBS). Several different scWGBS strategies have been described in recent years to study DNA methylation in single cells. However, there remain limitations with respect to cost-efficiency and yield. Herein, we present a new development in the field of scWGBS library preparation; single cell Splinted Ligation Adapter Tagging (scSPLAT). scSPLAT employs a pooling strategy to facilitate sample preparation at a higher scale and throughput than previously possible. We demonstrate the accuracy and robustness of the method by generating data from 225 single K562 cells and from 309 single liver nuclei and compare scSPLAT against other scWGBS methods.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sulfitos , Metilación de ADN , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Oligonucleótidos , Análisis de Secuencia de ADN/métodos
3.
Sci Rep ; 12(1): 7433, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523803

RESUMEN

Transcriptomic analyses are commonly used to identify differentially expressed genes between patients and controls, or within individuals across disease courses. These methods, whilst effective, cannot encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning (RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE) blood expression dataset, with the goal of developing gene networks to separate low and high disease activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting that the gene sets identified may further the understanding of gene networks that act in concert to drive disease progression. This included roles for genes (i) induced by interferons (IFI35 and OTOF), (ii) key to SLE cell types (KLRB1 encoding CD161), or (iii) with roles in autophagy and NF-κB pathway responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification.


Asunto(s)
Perfilación de la Expresión Génica , Lupus Eritematoso Sistémico , Niño , Expresión Génica , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA