Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.061
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(1): 166-177, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057617

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRß repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRß repertoires and paired-chain TCRÉ‘ß sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Linfocitos T CD8-positivos , Vacunación , ARN Mensajero/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Anticuerpos Antivirales
2.
Nature ; 627(8002): 116-122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355803

RESUMEN

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Asunto(s)
Biodiversidad , Metabolismo Energético , Cadena Alimentaria , Bosque Lluvioso , Animales , Artrópodos/metabolismo , Bacterias/metabolismo , Aves/metabolismo , Secuestro de Carbono , Heces , Hongos/metabolismo , Indonesia , Oligoquetos/metabolismo , Compuestos Orgánicos/metabolismo , Aceite de Palma , Goma , Suelo/química , Clima Tropical
3.
Nature ; 623(7989): 949-955, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38030777

RESUMEN

Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.

4.
Nature ; 623(7987): 499-501, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938777

RESUMEN

The majority of massive disk galaxies in the local Universe show a stellar barred structure in their central regions, including our Milky Way1,2. Bars are supposed to develop in dynamically cold stellar disks at low redshift, as the strong gas turbulence typical of disk galaxies at high redshift suppresses or delays bar formation3,4. Moreover, simulations predict bars to be almost absent beyond z = 1.5 in the progenitors of Milky Way-like galaxies5,6. Here we report observations of ceers-2112, a barred spiral galaxy at redshift zphot ≈ 3, which was already mature when the Universe was only 2 Gyr old. The stellar mass (M★ = 3.9 × 109 M⊙) and barred morphology mean that ceers-2112 can be considered a progenitor of the Milky Way7-9, in terms of both structure and mass-assembly history in the first 2 Gyr of the Universe, and was the closest in mass in the first 4 Gyr. We infer that baryons in galaxies could have already dominated over dark matter at z ≈ 3, that high-redshift bars could form in approximately 400 Myr and that dynamically cold stellar disks could have been in place by redshift z = 4-5 (more than 12 Gyrs ago)10,11.

5.
Nature ; 622(7984): 707-711, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37579792

RESUMEN

During the first 500 million years of cosmic history, the first stars and galaxies formed, seeding the Universe with heavy elements and eventually reionizing the intergalactic medium1-3. Observations with the James Webb Space Telescope (JWST) have uncovered a surprisingly high abundance of candidates for early star-forming galaxies, with distances (redshifts, z), estimated from multiband photometry, as large as z ≈ 16, far beyond pre-JWST limits4-9. Although such photometric redshifts are generally robust, they can suffer from degeneracies and occasionally catastrophic errors. Spectroscopic measurements are required to validate these sources and to reliably quantify physical properties that can constrain galaxy formation models and cosmology10. Here we present JWST spectroscopy that confirms redshifts for two very luminous galaxies with z > 11, and also demonstrates that another candidate with suggested z ≈ 16 instead has z = 4.9, with an unusual combination of nebular line emission and dust reddening that mimics the colours expected for much more distant objects. These results reinforce evidence for the early, rapid formation of remarkably luminous galaxies while also highlighting the necessity of spectroscopic verification. The large abundance of bright, early galaxies may indicate shortcomings in current galaxy formation models or deviations from physical properties (such as the stellar initial mass function) that are generally believed to hold at later times.

6.
Nature ; 618(7965): 480-483, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198479

RESUMEN

In the first billion years after the Big Bang, sources of ultraviolet (UV) photons are believed to have ionized intergalactic hydrogen, rendering the Universe transparent to UV radiation. Galaxies brighter than the characteristic luminosity L* (refs. 1,2) do not provide enough ionizing photons to drive this cosmic reionization. Fainter galaxies are thought to dominate the photon budget; however, they are surrounded by neutral gas that prevents the escape of the Lyman-α photons, which has been the dominant way to identify them so far. JD1 was previously identified as a triply-imaged galaxy with a magnification factor of 13 provided by the foreground cluster Abell 2744 (ref. 3), and a photometric redshift of z ≈ 10. Here we report the spectroscopic confirmation of this very low luminosity (≈0.05 L*) galaxy at z = 9.79, observed 480 Myr after the Big Bang, by means of the identification of the Lyman break and redward continuum, as well as multiple ≳4σ emission lines, with the Near-InfraRed Spectrograph (NIRSpec) and Near-InfraRed Camera (NIRCam) instruments. The combination of the James Webb Space Telescope (JWST) and gravitational lensing shows that this ultra-faint galaxy (MUV = -17.35)-with a luminosity typical of the sources responsible for cosmic reionization-has a compact (≈150 pc) and complex morphology, low stellar mass (107.19 M⊙) and subsolar (≈0.6 Z⊙) gas-phase metallicity.

7.
Annu Rev Pharmacol Toxicol ; 63: 617-636, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662585

RESUMEN

Phosphatases and kinases maintain an equilibrium of dephosphorylated and phosphorylated proteins, respectively, that are required for critical cellular functions. Imbalance in this equilibrium or irregularity in their function causes unfavorable cellular effects that have been implicated in the development of numerous diseases. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of protein substrates on tyrosine residues, and their involvement in cell signaling and diseases such as cancer and inflammatory and metabolic diseases has made them attractive therapeutic targets. However, PTPs have proved challenging in therapeutics development, garnering them the unfavorable reputation of being undruggable. Nonetheless, great strides have been made toward the inhibition of PTPs over the past decade. Here, we discuss the advancement in small-molecule inhibition for the PTP subfamily known as the mitogen-activated protein kinase (MAPK) phosphatases (MKPs). We review strategies and inhibitor discovery tools that have proven successful for small-molecule inhibition of the MKPs and discuss what the future of MKP inhibition potentially might yield.


Asunto(s)
Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , /farmacología
8.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586884

RESUMEN

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Asunto(s)
Farmacología Clínica , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras , Ligandos
9.
Nature ; 575(7781): 185-189, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659339

RESUMEN

Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.


Asunto(s)
Población Negra , Migración Humana/historia , Filogenia , Humedales , Población Negra/genética , Población Negra/historia , Clima , ADN Mitocondrial , Genoma Mitocondrial/genética , Haplotipos , Historia Antigua , Humanos , Densidad de Población , Lluvia , Estaciones del Año , Sudáfrica
10.
Cell Mol Life Sci ; 81(1): 65, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281222

RESUMEN

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.


Asunto(s)
Glándula Tiroides , Factores de Transcripción , Animales , Ratones , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Proteínas Represoras/genética , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Tirotropina/genética , Tirotropina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
11.
Genes Dev ; 31(16): 1655-1665, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903979

RESUMEN

Starvation induces liver autophagy, which is thought to provide nutrients for use by other organs and thereby maintain whole-body homeostasis. Here we demonstrate that O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Genetic ablation of OGT in mouse livers reduces autophagic flux and the production of glucose and ketone bodies. Upon glucagon-induced calcium signaling, calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates OGT, which in turn promotes O-GlcNAc modification and activation of Ulk proteins by potentiating AMPK-dependent phosphorylation. These findings uncover a signaling cascade by which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis.


Asunto(s)
Autofagia , Señalización del Calcio , Hígado/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Fenómenos Fisiológicos de la Nutrición , Adaptación Biológica , Animales , Proteína 5 Relacionada con la Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Glucagón/farmacología , Células HEK293 , Células HeLa , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/fisiología
12.
Diabetologia ; 67(4): 724-737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216792

RESUMEN

AIM/HYPOTHESIS: The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the maintenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes. METHODS: TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout (mKD) mice were generated to study TET3's role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays. RESULTS: TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified 'Mitochondrial Function' and 'PPARα Pathway' to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles of mKD mice vs WT mice, and lower PGC-1α protein levels (~25-60%) in HFD-fed or ob/ob mice compared with their control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its phosphorylation, leading to its destabilisation. CONCLUSIONS/INTERPRETATION: Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.gov/geo/ ) with accession number of GSE224042.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dioxigenasas , Resistencia a la Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dioxigenasas/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Struct Biol ; 216(1): 108063, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246580

RESUMEN

A novel helical N-capping motif has been considered. It occurs in the ßα-arches of right-handed ßαß-units and contains an N-cap residue in a sterically strained conformation. Moreover, this amino acid position contains almost no glycines, that could relieve strain. It was shown that the N-cap adopts this conformation as a result of the unusual convergence between the second and third amino acid positions of the α-helix (counting from the N-cap) and the second position of the preceding ß-strand. This is achieved by the presence of glycines in the specified positions (i.e. positions i - 2, i + 2 and i + 3, if N-cap is i). The N-cap conformation is stabilized by a hydrogen bond between the backbone amide group in the second position of the α-helix and the carbonyl group in the first position of the ß-strand. The occurrence of similar N-capping motifs in different types of ßαß-units was compared and their structural differences caused by the influence of the environment were described. Study results may be useful for protein design and ab initio prediction of the 3D protein structure.


Asunto(s)
Aminoácidos , Proteínas , Conformación Proteica en Hélice alfa , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Proteínas/química , Conformación Proteica , Aminoácidos/química , Enlace de Hidrógeno
14.
J Biol Chem ; 299(5): 104731, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37080392

RESUMEN

The identification of substrates for protein tyrosine phosphatases (PTPs) is critical for a complete understanding of how these enzymes function. In a recent study in the JBC, Bonham et al. developed a modified method combining substrate-trapping mutations with proximity-labeling MS to identify the protein substrates and interactors of PTP1B. This method revealed interaction networks in breast cancer cell models and discovered novel targets of PTP1B that regulate HER2 signaling pathways. This strategy represents a versatile new tool for identifying the functional interactions between PTPs and their substrates.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas/metabolismo , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Especificidad por Sustrato
15.
Phys Rev Lett ; 132(18): 186303, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38759174

RESUMEN

Quantum acoustics-a recently developed framework parallel to quantum optics-establishes a nonperturbative and coherent treatment of the electron-phonon interaction in real space. The quantum-acoustical representation reveals a displaced Drude peak hiding in plain sight within the venerable Fröhlich model: the optical conductivity exhibits a finite frequency maximum in the far-infrared range and the dc conductivity is suppressed. Our results elucidate the origin of the high-temperature absorption peaks in strange or bad metals, revealing that dynamical lattice disorder steers the system towards a non-Drude behavior.

16.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37969032

RESUMEN

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Asunto(s)
Síndrome de Costello , Displasia Ectodérmica , Cardiopatías Congénitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatías Congénitas/genética
17.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580232

RESUMEN

We report unexpected classical and quantum dynamics of a wave propagating in a periodic potential in high Brillouin zones. Branched flow appears at wavelengths shorter than the typical length scale of the ordered periodic structure and for energies above the potential barrier. The strongest branches remain stable indefinitely and may create linear dynamical channels, wherein waves are not confined directly by potential walls as electrons in ordinary wires but rather, indirectly and more subtly by dynamical stability. We term these superwires since they are associated with a superlattice.

18.
Entropy (Basel) ; 26(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056914

RESUMEN

The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fröhlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fröhlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.

19.
Entropy (Basel) ; 26(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38920501

RESUMEN

Recent theoretical investigations have revealed unconventional transport mechanisms within high Brillouin zones of two-dimensional superlattices. Electrons can navigate along channels we call superwires, gently guided without brute force confinement. Such dynamical confinement is caused by weak superlattice deflections, markedly different from the static or energetic confinement observed in traditional wave guides or one-dimensional electron wires. The quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space, and enabling the emergence of several parallel channels. This paper provides the underlying theory and mechanisms that facilitate dynamical tunneling assisted by chaos in periodic lattices. Moreover, we show that the mechanism of dynamical tunneling can be effectively conceptualized through the lens of a paraxial approximation. Our results further reveal that superwires predominantly exist within flat bands, emerging from eigenstates that represent linear combinations of conventional degenerate Bloch states. Finally, we quantify tunneling rates across various lattice configurations and demonstrate that tunneling can be suppressed in a controlled fashion, illustrating potential implications in future nanodevices.

20.
J Biol Chem ; 298(12): 102617, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272649

RESUMEN

The dual-specificity phosphatases responsible for the inactivation of the mitogen-activated protein kinases (MAPKs) are designated as the MAPK phosphatases (MKPs). We demonstrated previously that MKP5 is regulated through a novel allosteric site suggesting additional regulatory mechanisms of catalysis exist amongst the MKPs. Here, we sought to determine whether the equivalent site within the phosphatase domain of a highly similar MKP family member, MKP7, is also important for phosphatase function. We found that mutation of tyrosine 271 (Y271) in MKP7, which represents the comparable Y435 within the MKP5 allosteric pocket, inhibited MKP7 catalytic activity. Consistent with this, when MKP7 Y271 mutants were overexpressed in cells, the substrates of MKP7, p38 MAPK or JNK, failed to undergo dephosphorylation. The binding efficiency of MKP7 to p38 MAPK and JNK1/2 was also reduced when MKP7 Y271 is mutated. Consistent with reduced MAPK binding, we observed a greater accumulation of nuclear p38 MAPK and JNK when the MKP7 Y271 mutants are expressed in cells as compared with WT MKP7, which sequesters p38 MAPK/JNK in the cytoplasm. Therefore, we propose that Y271 is critical for effective MAPK dephosphorylation through a mechanism whereby binding to this residue precedes engagement of the catalytic site and upon overexpression, MKP7 allosteric site mutants potentiate MAPK signaling. These results provide insight into the regulatory mechanisms of MKP7 catalysis and interactions with the MAPKs. Furthermore, these data support the generality of the MKP allosteric site and provide a basis for small molecule targeting of MKP7.


Asunto(s)
Fosfatasas de Especificidad Dual , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Proteínas Tirosina Fosfatasas , Catálisis , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA