Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901743

RESUMEN

Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Biomimética , Calidad de Vida , Osteogénesis , Regeneración Ósea , Fenómenos Magnéticos
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445718

RESUMEN

Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.


Asunto(s)
Quitosano , Hemostáticos , Humanos , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Quitosano/farmacología , Quitosano/uso terapéutico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Hemostasis , Hemorragia/tratamiento farmacológico , Hemorragia/prevención & control
3.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003499

RESUMEN

Uncontrollable bleeding continues to stand as the primary cause of fatalities globally following surgical procedures, traumatic incidents, disasters, and combat scenarios. The swift and efficient management of bleeding through the application of hemostatic agents has the potential to significantly reduce associated mortality rates. One significant drawback of currently available hemostatic products is their susceptibility to bacterial infections at the bleeding site. As this is a prevalent issue that can potentially delay or compromise the healing process, there is an urgent demand for hemostatic agents with antibacterial properties to enhance survival rates. To mitigate the risk of infection at the site of a lesion, we propose an alternative solution in the form of a chitosan-based sponge and antimicrobial agents such as silver nanoparticles (AgNPs) and lavender essential oil (LEO). The aim of this work is to provide a new type of hemostatic sponge with an antibacterial barrier against a wide range of Gram-positive and Gram-negative microorganisms: Staphylococcus epidermidis 2018 and Enterococcus faecalis VRE 2566 (Gram-positive strains) and Klebsiella pneumoniae ATCC 10031 and Escherichia coli ATCC 35218 (Gram-negative strains).


Asunto(s)
Quitosano , Hemostáticos , Nanopartículas del Metal , Quitosano/farmacología , Hemostáticos/farmacología , Plata , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
4.
Medicina (Kaunas) ; 59(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37629697

RESUMEN

Pancreatic heterotopy is a rare entity defined as the presence of abnormally located pancreatic tissue without any anatomical or vascular connection to the normal pancreas. Heterotopic pancreatic tissue can be found in various regions of the digestive system, such as the stomach, duodenum, and upper jejunum, with the less commonly reported location being the gallbladder. Gallbladder pancreatic heterotopia can be either an incidental finding or diagnosed in association with cholecystitis. Pancreatitis of the ectopic tissue has also been described. In this context, we report three cases of heterotopic pancreatic tissue in the gallbladder with different types of pancreatic tissue according to the Heinrich classification. One patient was a 24-year-old male who presented with acute pancreatitis symptoms and an ultrasonographical detected mass in the gallbladder, which proved to be heterotopic pancreatic tissue. The other two cases were female patients aged 24 and 32, respectively, incidentally diagnosed on histopathological examination after cholecystectomy for symptomatic cholelithiasis. Both cases displayed chronic cholecystitis lesions; one of them was also associated with low grade dysplasia of the gallbladder. Although a rare occurrence in general, pancreatic heterotopia should be acknowledged as a possible incidental finding in asymptomatic patients as well as a cause for acute cholecystitis or pancreatitis.


Asunto(s)
Colecistitis , Coristoma , Pancreatitis , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Enfermedad Aguda , Pancreatitis/diagnóstico por imagen , Pancreatitis/cirugía , Colecistitis/diagnóstico por imagen , Colecistitis/cirugía , Coristoma/diagnóstico por imagen , Coristoma/cirugía , Diagnóstico por Imagen
5.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144818

RESUMEN

Sr2+-substituted ß-tricalcium phosphate (ß-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that ß-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial ß-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the ß-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.


Asunto(s)
Solución Salina , Estroncio , Apatitas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cerámica/química , Cerámica/farmacología , Humanos , Iones , Polvos , Estroncio/química , Estroncio/farmacología , Difracción de Rayos X
6.
Medicina (Kaunas) ; 58(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36295565

RESUMEN

Malignant peripheral nerve sheath tumour (MPNST) is an aggressive and uncommon cancer developing in the peripheral nerve sheath. Primary cardiac MPNST is an extremely rare finding, with no specific imaging and clinical characteristics. Only a handful of cases have been reported in the literature; thus, little is still known about them. Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (CMRI) are important means of assessing cardiac morphology and function. The preferred course of treatment for this pathology is by full surgical resection of the tumour, with negative (clear) margins, followed by adjuvant radiotherapy and chemotherapy. We present the case of a 42-year-old woman with no significant cardiovascular symptoms who was incidentally diagnosed during routine transthoracic echocardiography (TTE) with a cardiac mass located in the left ventricle.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibrosarcoma , Femenino , Humanos , Adulto , Neoplasias de la Vaina del Nervio/diagnóstico por imagen , Neoplasias de la Vaina del Nervio/patología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Imagen por Resonancia Magnética , Radioterapia Adyuvante
7.
Medicina (Kaunas) ; 56(2)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033289

RESUMEN

Plasma cell features are encountered in a variety of non-plasma cell neoplasias, especially carcinomas of a discohesive type, such as those occurring in the digestive tract and breast. Lobular carcinomas of the breast present themselves in a variety of architectural patterns and many cell morphologies, including plasmacytoid types. A matching plasma cell phenotype is sometimes an associated feature. We report a case of a moderate grade invasive lobular carcinoma with focal plasmacytoid morphology and aberrant expression of plasma cell markers in a patient previously diagnosed with multiple myeloma. Paradoxical plasma cell immunoprofiles can be encountered in many malignancies, causing serious diagnostic problems, even more so with those occurring in discohesive carcinomas in multiple myeloma patients.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Lobular/patología , Mieloma Múltiple/patología , Células Plasmáticas/patología , Enfermedades Raras/patología , Tejido Adiposo/patología , Anciano , Anticuerpos Antineoplásicos , Neoplasias de la Mama/inmunología , Carcinoma Lobular/inmunología , Femenino , Humanos , Cadenas kappa de Inmunoglobulina/análisis , Inmunohistoquímica , Mieloma Múltiple/inmunología , Adhesión en Parafina/métodos , Fenotipo , Células Plasmáticas/inmunología , Enfermedades Raras/inmunología , Sindecano-1/análisis
8.
Medicina (Kaunas) ; 56(5)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403360

RESUMEN

Background and Objectives: Current recommendations and treatment regimens in breast cancer are a reflection of its heterogeneity on multiple levels including histological subtypes, grading, molecular profiling, and numerous prognostic indices. Although based on extensive research, current guidelines are not explicit in the case of surgical specimens showing various degrees of mismatch between different parts of the same tumor and even more so between multicentric lesions. Synchronous breast cancer is the ideal prototype for studying inter- and intra-tumoral heterogeneity, therefore we envisaged that a study on patients with multicentric and multifocal lesions could contribute to the reshaping of the staging, prognosis, and treatment of breast malignancies. Material and Methods: A prospective observational study was conducted between January 2013 and May 2017 on 235 patients diagnosed with breast cancer (BC) and surgically treated at Emergency University Hospital, Bucharest. Thirty-seven patients had multiple breast tumors and were eligible for assessment of the heterogeneity of their lesions. Results: 6 were multicentric and 31 multifocal. The number of foci varied from 2 to 11. We encountered numerous mismatches between the index and the secondary tumors, as follows: 3 cases (8.1%) with histopathological mismatch, 13 (35.1%) with different grades of differentiation, 11 (29.8%) with ER (Estrogen Receptors) status mismatch, 12 (32.4%) with PR (Progesterone Receptors) status mismatch, 8 (21.6%) with molecular phenotype mismatch, and 17 (45.9%) cases with variable Ki-67. After careful analysis of index and secondary tumors, apart from the mismatches reported above, we discovered that the secondary tumors were actually dominant in 5 cases (13.5%), and therefore at least those cases had to be reclassified/restaged, as the supplementary data commanded changes in the therapeutic decision. Conclusions: For synchronous breast tumors, the current Tumor-Node-Metastasis (TNM) staging system ignores not only the histopathological and immunohistochemical characteristics of the secondary foci, but also their size. When secondary lesions are more aggressive or their cumulative mass is significantly bigger than that of the index tumor, the treatment plan should be adapted accordingly. We believe that information obtained from examining secondary foci in synchronous breast cancer and assessment of the cumulative tumoral mass should be reflected in the final staging and definitive treatment. The clinical benefit of staging the patients based on the most aggressive tumor and the cumulative tumoral burden rather than according to the biggest single tumor, will avoid under-treatment in cases with multifocal/multicentric BC displaying intertumoral mismatch.


Asunto(s)
Neoplasias de la Mama/patología , Estadificación de Neoplasias/métodos , Neoplasias Primarias Secundarias/patología , Anciano , Neoplasias de la Mama/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias/normas , Neoplasias Primarias Secundarias/cirugía , Estudios Prospectivos
9.
Medicina (Kaunas) ; 55(6)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163703

RESUMEN

The case of a 61-year-old male with a recent total gastrectomy for a hemorrhagic gastric tumor is presented, with the important co-morbidities of type II diabetes mellitus requiring insulin, chronic hepatitis C with liver dysfunction, stage II essential hypertension, chronic stage III renal disease peripheral type II aorto-iliac disease with stage II ischemia of both legs, and chronic anemia. About one month following the gastrectomy, the patient presented with fever and acute inflammatory syndrome. Severe aortic insufficiency, aortic valvular vegetations, and positive blood cultures with Staphylococcus saprophytic were found. The diagnosis of infectious endocarditis on the aortic valve was established (positive blood cultures with echocardiographic features of vegetations, fever), and antibiotic treatment with Levofloxacin and Vancomycin was initiated. The evolution was favorable with the remission of the inflammatory syndrome and quick cessation of fever. However, the hemodynamic aspect showed progressive heart failure with acute pulmonary edema. The transesophageal echocardiographic examination confirmed the existence of severe aortic insufficiency and valvular vegetations with a left ventricular ejection fraction of 38%. The coronary angiography revealed double vessel disease. The calculated Euroscore II was 33.4%. Aortic valve replacement with porcine xenograft and double coronary artery bypass graft surgery was performed. The patient had a favorable postoperative course remaining afebrile and out of heart failure, with the markers of inflammation largely within normal limits. The left ventricular ejection fraction increased to 50%. The successful outcome of this case, represented by a rare association of cancer, endocarditis, and coronary disease, reveals the importance of the multidisciplinary teams involved in this case: gastroenterology, general surgery, cardiology, infectious diseases, cardiac surgery, and intensive care. Therefore, in such cases with high risk, complex patients, a strong collaboration between all specialties is needed to overcome all of the limitations of the patient's co-morbidities.


Asunto(s)
Endocarditis/etiología , Neoplasias Gástricas/complicaciones , Adenocarcinoma/complicaciones , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Válvula Aórtica/anomalías , Válvula Aórtica/fisiopatología , Válvula Aórtica/cirugía , Procedimientos Quirúrgicos Cardíacos/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/fisiopatología , Endocarditis/cirugía , Gastrectomía/métodos , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía , Tomografía Computarizada por Rayos X/métodos
10.
J Mater Sci Mater Med ; 25(4): 1115-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24481532

RESUMEN

Chemical modification of cellulose by phosphorylation enhances its bioactivity and provides new derivatives and materials with specific end uses. In the present study, cellulose derivatized with phosphorous acid was obtained using the reaction of microcrystalline cellulose with phosphorous acid-urea mixture, in molten state, in comparison with others methods that used different solvents and catalysts. Completely water soluble films with a substitution degree close to one were obtained and characterized by analytical and spectral analysis (FT-IR, (31)P NMR), contact angle, metallographic microscopy and atomic force microscopy (AFM). 31P NMR spectra of derivatized cellulose showed a signal at 2.58 ppm (assigned to P-O-C6) while the doublets at 4.99-5.29 and at 7.38 ppm were assigned to P-O-C2 and P-O-C3, respectively; thus, the formation of monosubstituted phosphorous acid esters of cellulose is advocated. Contact angle measurements showed that the work of adhesion is more important in water than in ethylene glycol, for the phosphorous acid derivatized cellulose. The cytocompatibility of this hydrosoluble derivatized cellulose was tested by direct contact and also by indirect assays on normal human dermal fibroblasts and on osteoblast-like cells (human osteosarcoma). Cell growth on phosphorylated cellulose pellicle and the results from viability assays had shown a good cytocompatibility and lack of toxicity. Phosphorous acid derivatized cellulose would offer a promising biomaterial, useful as scaffolds for new biopolymer composites, and subject for further development as an ionic crosslinker.


Asunto(s)
Materiales Biocompatibles/química , Celulosa/química , Andamios del Tejido/química , Materiales Biocompatibles/toxicidad , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Celulosa/toxicidad , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ensayo de Materiales , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Ácidos Fosforosos/química , Solubilidad , Ingeniería de Tejidos , Andamios del Tejido/efectos adversos
11.
Regen Biomater ; 10: rbad095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020233

RESUMEN

Magnesium and its alloys are one of the most used materials for bone implants and tissue engineering. They are characterized by numerous advantages such as biodegradability, high biocompatibility and mechanical properties with values close to the human bone. Unfortunately, the implant surface must be adequately tuned, or Mg-based alloys must be alloyed with other chemical elements due to their increased corrosion effect in physiological media. This article reviews the clinical challenges related to bone repair and regeneration, classifying bone defects and presenting some of the most used and modern therapies for bone injuries, such as Ilizarov or Masquelet techniques or stem cell treatments. The implant interface challenges are related to new bone formation and fracture healing, implant degradation and hydrogen release. A detailed analysis of mechanical properties during implant degradation is extensively described based on different literature studies that included in vitro and in vivo tests correlated with material properties' characterization. Mg-based trauma implants such as plates and screws, intramedullary nails, Herbert screws, spine cages, rings for joint treatment and regenerative scaffolds are presented, taking into consideration their manufacturing technology, the implant geometrical dimensions and shape, the type of in vivo or in vitro studies and fracture localization. Modern technologies that modify or adapt the Mg-based implant interfaces are described by presenting the main surface microstructural modifications, physical deposition and chemical conversion coatings. The last part of the article provides some recommendations from a translational perspective, identifies the challenges associated with Mg-based implants and presents some future opportunities. This review outlines the available literature on trauma and regenerative bone implants and describes the main techniques used to control the alloy corrosion rate and the cellular environment of the implant.

12.
Materials (Basel) ; 16(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37629847

RESUMEN

In terms of production technology, metal-ceramic systems for dental restorations comply with a concrete algorithm, the efficiency of which is always dependent on the applications for which they are intended. The first stage involves obtaining metal support, followed by firing the ceramic on the surface of the metal to meet the list of functional and aesthetic requirements of a future restoration. The compatibility of the two materials-the metal component and the ceramic component-must be ensured in several respects: chemical compatibility, thermo-chemical compatibility, and mechanical compatibility. Thus, there is a need to simulate the thermal behavior of the metal-ceramic couple in its processing to achieve appropriate dental prostheses. In this study, three types of Co-Cr metal frames were manufactured using three different production technologies: conventional casting, milling (CAM), and selective laser melting (SLM). Composition analyses, scanning electron microscopy (SEM), and microstructural analyses of the metal-ceramic interface for each type of production technology, as well as the determination of the hardness and the thermal expansion coefficients of experimental materials and three-point bending tests, were carried out in this study. Considering all these aspects, we demonstrated the influence of the technology of producing the metallic part of the metal-ceramic bonding process in dental prostheses.

13.
J Funct Biomater ; 14(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37233360

RESUMEN

Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.

14.
Micromachines (Basel) ; 14(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677287

RESUMEN

Monitoring changes in edema-associated intracranial pressure that complicates trauma or surgery would lead to improved outcomes. Implantable pressure sensors have been explored, but these sensors require post-surgical removal, leading to the risk of injury to brain tissue. The use of biodegradable implantable sensors would help to eliminate this risk. Here, we demonstrate a bioactive glass (BaG)-based hydration sensor. Fluorine (CaF2) containing BaG (BaG-F) was produced by adding 5, 10 or 20 wt.% of CaF2 to a BaG matrix using a melting manufacturing technique. The structure, morphology and electrical properties of the resulting constructs were evaluated to understand the physical and electrical behaviors of this BaG-based sensor. Synthesis process for the production of the BaG-F-based sensor was validated by assessing the structural and electrical properties. The structure was observed to be amorphous and dense, the porosity decreased and grain size increased with increasing CaF2 content in the BaG matrix. We demonstrated that this BaG-F chemical composition is highly sensitive to hydration, and that the electrical sensitivity (resistive-capacitive) is induced by hydration and reversed by dehydration. These properties make BaG-F suitable for use as a humidity sensor to monitor brain edema and, consequently, provide an alert for increased intracranial pressure.

15.
J Funct Biomater ; 14(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37504859

RESUMEN

Derived Hench bioactive glass (BaG) containing boron (B) is explored in this work as it plays an important role in bone development and regeneration. B was also found to enhance BaG dissociation. However, it is only possible to incorporate a limited amount of B. To increase the amount of B in BaG, bioactive borosilicate glasses (BaG-Bx) were fabricated based on the use of the solution-gelation process (sol-gel). In this work, a high B content (20 wt.%) in BaG, respecting the conditions of bioactivity and biodegradability required by Hench, was achieved for the first time. The capability of BaG-Bx to form an apatite phase was assessed in vitro by immersion in simulated body fluid (SBF). Then, the chemical structure and the morphological changes in the fabricated BaG-Bx (x = 0, 5, 10 and 20) were studied. The formation of hydroxyapatite (HAp) layer was observed with X-ray diffraction (XRD) and infrared (IR) spectroscopy. The presence of HAp layer was confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Enhanced bioactivity and chemical stability of BaG-Bx were evaluated with an ion exchange study based on Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and energy dispersive spectroscopy (EDS). Results indicate that by increasing the concentration of B in BaG-Bx, the crystallization rate and the quality of the newly formed HAp layer on BaG-Bx surfaces can be improved. The presence of B also leads to enhanced degradation of BaGs in SBF. Accordingly, BAG-Bx can be used for bone regeneration, especially in children, because of its faster degradation as compared to B-free glass.

16.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38006168

RESUMEN

The synthesis of biocompatible and bioresorbable composite materials, such as a "polymer matrix-mineral constituent," stimulating the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine and materials science. Composite films of bioresorbable polymer of polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) were obtained. HA was synthesized in situ in the polymer solution. We applied electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) approaches to study the composite films' properties. The application of EPR in two frequency ranges allowed us to derive spectroscopic parameters of the nitrogen-based light and radiation-induced paramagnetic centers in HA, PVP and PVP-HA with high accuracy. It was shown that PVP did not significantly affect the EPR spectral and relaxation parameters of the radiation-induced paramagnetic centers in HA, while light-induced centers were detected only in PVP. Magic angle spinning (MAS) 1H NMR showed the presence of two signals at 4.7 ppm and -2.15 ppm, attributed to "free" water and hydroxyl groups, while the single line was attributed to 31P. NMR relaxation measurements for 1H and 31P showed that the relaxation decays were multicomponent processes that can be described by three components of the transverse relaxation times. The obtained results demonstrated that the applied magnetic resonance methods can be used for the quality control of PVP-HA composites and, potentially, for the development of analytical tools to follow the processes of sample treatment, resorption, and degradation.

17.
Materials (Basel) ; 16(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834657

RESUMEN

High-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties. According to the calculation of the valence electron concentration, a majority of body-centered cubic (BCC) phases were expected, resulting in properties such as high strength and plasticity for the studied alloy, confirmed by the XRD analysis. The tetragonal (TVC) phase was also identified, indicating that the presence of face-centered cubic (FCC) phases in the alloyed materials resulted in high ductility. Microstructural and compositional analyses revealed refined and uniform metallic powder particles, with a homogeneous distribution of the elemental particles observed from the mapping analyses, indicating that alloying had occurred. The technological characterization of the high-entropy alloy-elaborated powder revealed the particle dimension reduction due to the welding and fracturing process that occurs during mechanical alloying, with a calculated average particle size of 45.12 µm.

18.
Biomimetics (Basel) ; 8(8)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38132557

RESUMEN

Treatment of bone defects resulting after tumor surgeries, accidents, or non-unions is an actual problem linked to morbidity and the necessity of a second surgery and often requires a critical healthcare cost. Although the surgical technique has changed in a modern way, the treatment outcome is still influenced by patient age, localization of the bone defect, associated comorbidities, the surgeon approach, and systemic disorders. Three-dimensional magnesium-based scaffolds are considered an important step because they can have precise bone defect geometry, high porosity grade, anatomical pore shape, and mechanical properties close to the human bone. In addition, magnesium has been proven in in vitro and in vivo studies to influence bone regeneration and new blood vessel formation positively. In this review paper, we describe the magnesium alloy's effect on bone regenerative processes, starting with a short description of magnesium's role in the bone healing process, host immune response modulation, and finishing with the primary biological mechanism of magnesium ions in angiogenesis and osteogenesis by presenting a detailed analysis based on a literature review. A strategy that must be followed when a patient-adapted scaffold dedicated to bone tissue engineering is proposed and the main fabrication technologies are combined, in some cases with artificial intelligence for Mg alloy scaffolds, are presented with examples. We emphasized the microstructure, mechanical properties, corrosion behavior, and biocompatibility of each study and made a basis for the researchers who want to start to apply the regenerative potential of magnesium-based scaffolds in clinical practice. Challenges, future directions, and special potential clinical applications such as osteosarcoma and persistent infection treatment are present at the end of our review paper.

19.
Materials (Basel) ; 16(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36676290

RESUMEN

Magnesium alloys are considered one of the most promising materials for biodegradable trauma implants because they promote bone healing and exhibit adequate mechanical strength during their biodegradation in relation to the bone healing process. Surface modification of biodegradable magnesium alloys is an important research field that is analyzed in many publications as the biodegradation due to the corrosion process and the interface with human tissue is improved. The aim of the current preliminary study is to develop a polymeric-based composite coating on biodegradable magnesium alloys by the solvent evaporation method to reduce the biodegradation rate much more than in the case of simple polymeric coatings by involving some bioactive filler in the form of particles consisting of hydroxyapatite and magnesium. Various techniques such as SEM coupled with EDS, FTIR, and RAMAN spectroscopy, and contact angle were used for the structural and morphological characterization of the coatings. In addition, thermogravimetric analysis (TGA) was used to study the effect of filler particles on polymer thermostability. In vitro cytotoxicity assays were performed on MG-63 cells (human osteosarcomas). The experimental analysis highlights the positive effect of magnesium and hydroxyapatite particles as filler for cellulose acetate when they are used alone from biocompatibility and surface analysis points of view, and it is not recommended to use both types of particles (hydroxyapatite and magnesium) as hybrid filling. In future studies focused on implantation testing, we will use only CA-based composite coatings with one filler on magnesium alloys because these composite coatings have shown better results from the in vitro testing point of view for future potential orthopedic biodegradable implants for trauma.

20.
Materials (Basel) ; 16(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444822

RESUMEN

The most critical shortcoming of magnesium alloys from the point of view of medical devices is the high corrosion rate, which is not well-correlated with clinical needs. It is well- known that rapid degradation occurs when an implant made of Mg-based alloys is placed inside the human body. Consequently, the implant loses its mechanical properties and failure can occur even if it is not completely degraded. The corrosion products that appear after Mg-based alloy degradation, such as H2 and OH- can have an essential role in decreasing biocompatibility due to the H2 accumulation process in the tissues near the implant. In order to control the degradation process of the Mg-based alloys, different coatings could be applied. The aim of the current paper is to evaluate the effect of fluoride coatings on the corrosion behavior of magnesium alloys from the system Mg-Zn-Ca-Mn potentially used for orthopedic trauma implants. The main functional properties required for the magnesium alloys to be used as implant materials, such as surface properties and corrosion behavior, were studied before and after surface modifications by fluoride conversion, with and without preliminary sandblasting, of two magnesium alloys from the system Mg-Zn-Ca-Mn. The experimental results showed that chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental magnesium alloys from the Mg-Zn-Ca-Mn system. Also, high surface free energy values obtained for the alloys treated with hydrofluoric acid correlated with wettability lead to the conclusion that there is an increased chance for biological factor adsorption and cell proliferation. Chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental Mg-Zn-Ca-Mn alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA