Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.869
Filtrar
Más filtros

Intervalo de año de publicación
2.
Nature ; 619(7971): 801-810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438528

RESUMEN

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Asunto(s)
Microambiente Celular , Corazón , Multiómica , Miocardio , Humanos , Comunicación Celular , Fibroblastos/citología , Ácido Glutámico/metabolismo , Corazón/anatomía & histología , Corazón/inervación , Canales Iónicos/metabolismo , Miocardio/citología , Miocardio/inmunología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Neuroglía/citología , Pericardio/citología , Pericardio/inmunología , Células Plasmáticas/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Nodo Sinoatrial/anatomía & histología , Nodo Sinoatrial/citología , Nodo Sinoatrial/fisiología , Sistema de Conducción Cardíaco/anatomía & histología , Sistema de Conducción Cardíaco/citología , Sistema de Conducción Cardíaco/metabolismo
3.
EMBO J ; 42(24): e114072, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37984437

RESUMEN

Piwi-interacting RNAs (piRNAs) direct PIWI proteins to transposons to silence them, thereby preserving genome integrity and fertility. The piRNA population can be expanded in the ping-pong amplification loop. Within this process, piRNA-associated PIWI proteins (piRISC) enter a membraneless organelle called nuage to cleave their target RNA, which is stimulated by Gtsf proteins. The resulting cleavage product gets loaded into an empty PIWI protein to form a new piRISC complex. However, for piRNA amplification to occur, the new RNA substrates, Gtsf-piRISC, and empty PIWI proteins have to be in physical proximity. In this study, we show that in silkworm cells, the Gtsf1 homolog BmGtsf1L binds to piRNA-loaded BmAgo3 and localizes to granules positive for BmAgo3 and BmVreteno. Biochemical assays further revealed that conserved residues within the unstructured tail of BmGtsf1L directly interact with BmVreteno. Using a combination of AlphaFold modeling, atomistic molecular dynamics simulations, and in vitro assays, we identified a novel binding interface on the BmVreteno-eTudor domain, which is required for BmGtsf1L binding. Our study reveals that a single eTudor domain within BmVreteno provides two binding interfaces and thereby interconnects piRNA-loaded BmAgo3 and BmGtsf1L.


Asunto(s)
Bombyx , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Bombyx/genética , Bombyx/metabolismo , ARN de Interacción con Piwi , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Dominio Tudor
4.
Genes Dev ; 33(3-4): 209-220, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692207

RESUMEN

Spatiotemporal control of Wnt signaling is essential for the development and homeostasis of many tissues. The transmembrane E3 ubiquitin ligases ZNRF3 (zinc and ring finger 3) and RNF43 (ring finger protein 43) antagonize Wnt signaling by promoting degradation of frizzled receptors. ZNRF3 and RNF43 are frequently inactivated in human cancer, but the molecular and therapeutic implications remain unclear. Here, we demonstrate that adrenocortical-specific loss of ZNRF3, but not RNF43, results in adrenal hyperplasia that depends on Porcupine-mediated Wnt ligand secretion. Furthermore, we discovered a Wnt/ß-catenin signaling gradient in the adrenal cortex that is disrupted upon loss of ZNRF3. Unlike ß-catenin gain-of-function models, which induce high Wnt/ß-catenin activation and expansion of the peripheral cortex, ZNRF3 loss triggers activation of moderate-level Wnt/ß-catenin signaling that drives proliferative expansion of only the histologically and functionally distinct inner cortex. Genetically reducing ß-catenin dosage significantly reverses the ZNRF3-deficient phenotype. Thus, homeostatic maintenance of the adrenal cortex is dependent on varying levels of Wnt/ß-catenin activation, which is regulated by ZNRF3.


Asunto(s)
Corteza Suprarrenal/metabolismo , Homeostasis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Corteza Suprarrenal/citología , Corteza Suprarrenal/crecimiento & desarrollo , Enfermedades de la Corteza Suprarrenal/fisiopatología , Animales , Proliferación Celular/genética , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Modelos Animales , Activación Transcripcional/genética , Ubiquitina-Proteína Ligasas/genética
5.
Immunol Rev ; 313(1): 262-278, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36110036

RESUMEN

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal, not malignant, hematological disease characterized by intravascular hemolysis, thrombophilia and bone marrow failure. While this latter presentation is due to a T-cell mediated auto-immune disorder resembling acquired aplastic anemia, the first two clinical presentations are largely driven by the complement pathway. Indeed, PNH is characterized by a broad impairment of complement regulation on affected cells, which is due to the lack of the complement regulators CD55 and CD59. The deficiency of these two proteins from PNH blood cells is due to the somatic mutation in the phosphatidylinositol N-acetylglucosaminyltransferase subunit A gene causing the disease, which impairs the surface expression of all proteins linked via the glycosylphosphatidylinositol anchor. The lack of the complement regulators CD55 and CD59 on PNH erythrocytes accounts for the hallmark of PNH, which is the chronic, complement-mediated intravascular hemolysis. This hemolysis results from the impaired regulation of the alternative pathway upstream in the complement cascade, as well as of the downstream terminal pathway. PNH represented the first indication for the development of anti-complement agents, and the therapeutic interception of the complement cascade at the level of C5 led to remarkable changes in the natural history of the disease. Nevertheless, the clinical use of an inhibitor of the terminal pathway highlighted the broader derangement of complement regulation in PNH, shedding light on the pivotal role of the complement alternative pathway. Here we review the current understanding of the role of the alternative pathway in PNH, including the emergence of C3-mediated extravascular hemolysis in PNH patients on anti-C5 therapies. These observations provide the rationale for the development of novel complement inhibitors for the treatment of PNH. Recent preclinical and clinical data on proximal complement inhibitors intercepting the alternative pathway with the aim of improving the treatment of PNH are discussed, together with their clinical implications which are animating a lively debate in the scientific community.


Asunto(s)
Hemoglobinuria Paroxística , Humanos , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemólisis , Anticuerpos Monoclonales Humanizados/uso terapéutico , Proteínas del Sistema Complemento , Inactivadores del Complemento/uso terapéutico , Antígenos CD55
7.
Semin Immunol ; 59: 101618, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35764467

RESUMEN

The treatment of paroxysmal nocturnal hemoglobinuria (PNH) was revolutionized by the introduction of the anti-C5 agent eculizumab, which resulted in sustained control of intravascular hemolysis, leading to transfusion avoidance and hemoglobin stabilization in at least half of all patients. Nevertheless, extravascular hemolysis mediated by C3 has emerged as inescapable phenomenon in PNH patients on anti-C5 treatment, frequently limiting its hematological benefit. More than 10 years ago we postulated that therapeutic interception of the complement cascade at the level of C3 should improve the clinical response in PNH. Compstatin is a 13-residue disulfide-bridged peptide binding to both human C3 and C3b, eventually disabling the formation of C3 convertases and thereby preventing complement activation via all three of its activating pathways. Several generations of compstatin analogs have been tested in vitro, and their clinical evaluation has begun in PNH and other complement-mediated diseases. Pegcetacoplan, a pegylated form of the compstatin analog POT-4, has been investigated in two phase I/II and one phase III study in PNH patients. In the phase III study, PNH patients with residual anemia already on eculizumab were randomized to receive either pegcetacoplan or eculizumab in a head-to-head comparison. At week 16, pegcetacoplan was superior to eculizumab in terms of hemoglobin change from baseline (the primary endpoint), as well as in other secondary endpoints tracking intravascular and extravascular hemolysis. Pegcetacoplan showed a good safety profile, even though breakthrough hemolysis emerged as a possible risk requiring additional attention. Here we review all the available data regarding this innovative treatment that has recently been approved for the treatment of PNH.


Asunto(s)
Hemoglobinuria Paroxística , Humanos , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemólisis , Complemento C3/metabolismo , Activación de Complemento , Hemoglobinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Proc Natl Acad Sci U S A ; 120(50): e2314429120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055739

RESUMEN

We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.


Asunto(s)
Proteínas de Unión al GTP , Linfopenia , Humanos , Proteínas de Unión al GTP/metabolismo , Proteómica , Hígado/metabolismo , Linfocitos/metabolismo , Linfopenia/genética , Homeostasis
9.
Proc Natl Acad Sci U S A ; 120(2): e2205371120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595695

RESUMEN

Development of multicellular organisms is orchestrated by persistent cell-cell communication between neighboring partners. Direct interaction between different cell types can induce molecular signals that dictate lineage specification and cell fate decisions. Current single-cell RNA-seq technology cannot adequately analyze cell-cell contact-dependent gene expression, mainly due to the loss of spatial information. To overcome this obstacle and resolve cell-cell contact-specific gene expression during embryogenesis, we performed RNA sequencing of physically interacting cells (PIC-seq) and assessed them alongside similar single-cell transcriptomes derived from developing mouse embryos between embryonic day (E) 7.5 and E9.5. Analysis of the PIC-seq data identified gene expression signatures that were dependent on the presence of specific neighboring cell types. Our computational predictions, validated experimentally, demonstrated that neural progenitor (NP) cells upregulate Lhx5 and Nkx2-1 genes, when exclusively interacting with definitive endoderm (DE) cells. Moreover, there was a reciprocal impact on the transcriptome of DE cells, as they tend to upregulate Rax and Gsc when in contact with NP cells. Using individual cell transcriptome data, we formulated a means of computationally predicting the impact of one cell type on the transcriptome of its neighboring cell types. We have further developed a distinctive spatial-t-distributed stochastic neighboring embedding to display the pseudospatial distribution of cells in a 2-dimensional space. In summary, we describe an innovative approach to study contact-specific gene regulation during embryogenesis.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Animales , Ratones , Desarrollo Embrionario/genética , Diferenciación Celular/genética , Transcriptoma , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica
10.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216508

RESUMEN

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Asunto(s)
Alquenos , Ácidos Grasos , Ácidos Grasos/metabolismo , Alquenos/química , Descarboxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción
11.
EMBO J ; 40(17): e107271, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34368984

RESUMEN

Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less-fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.


Asunto(s)
Competencia Celular , Neoplasias/metabolismo , Microambiente Tumoral , Animales , Humanos , Neoplasias/patología , Transducción de Señal
12.
N Engl J Med ; 387(11): 978-988, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36036525

RESUMEN

BACKGROUND: Testing of factor Xa inhibitors for the prevention of cardiovascular events in patients with rheumatic heart disease-associated atrial fibrillation has been limited. METHODS: We enrolled patients with atrial fibrillation and echocardiographically documented rheumatic heart disease who had any of the following: a CHA2DS2VASc score of at least 2 (on a scale from 0 to 9, with higher scores indicating a higher risk of stroke), a mitral-valve area of no more than 2 cm2, left atrial spontaneous echo contrast, or left atrial thrombus. Patients were randomly assigned to receive standard doses of rivaroxaban or dose-adjusted vitamin K antagonist. The primary efficacy outcome was a composite of stroke, systemic embolism, myocardial infarction, or death from vascular (cardiac or noncardiac) or unknown causes. We hypothesized that rivaroxaban therapy would be noninferior to vitamin K antagonist therapy. The primary safety outcome was major bleeding according to the International Society of Thrombosis and Hemostasis. RESULTS: Of 4565 enrolled patients, 4531 were included in the final analysis. The mean age of the patients was 50.5 years, and 72.3% were women. Permanent discontinuation of trial medication was more common with rivaroxaban than with vitamin K antagonist therapy at all visits. In the intention-to-treat analysis, 560 patients in the rivaroxaban group and 446 in the vitamin K antagonist group had a primary-outcome event. Survival curves were nonproportional. The restricted mean survival time was 1599 days in the rivaroxaban group and 1675 days in the vitamin K antagonist group (difference, -76 days; 95% confidence interval [CI], -121 to -31; P<0.001). A higher incidence of death occurred in the rivaroxaban group than in the vitamin K antagonist group (restricted mean survival time, 1608 days vs. 1680 days; difference, -72 days; 95% CI, -117 to -28). No significant between-group difference in the rate of major bleeding was noted. CONCLUSIONS: Among patients with rheumatic heart disease-associated atrial fibrillation, vitamin K antagonist therapy led to a lower rate of a composite of cardiovascular events or death than rivaroxaban therapy, without a higher rate of bleeding. (Funded by Bayer; INVICTUS ClinicalTrials.gov number, NCT02832544.).


Asunto(s)
Anticoagulantes , Fibrilación Atrial , Inhibidores del Factor Xa , Cardiopatía Reumática , Rivaroxabán , Anticoagulantes/efectos adversos , Anticoagulantes/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/etiología , Ecocardiografía , Inhibidores del Factor Xa/efectos adversos , Inhibidores del Factor Xa/uso terapéutico , Femenino , Hemorragia/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad , Cardiopatía Reumática/complicaciones , Cardiopatía Reumática/diagnóstico , Cardiopatía Reumática/diagnóstico por imagen , Rivaroxabán/efectos adversos , Rivaroxabán/uso terapéutico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Resultado del Tratamiento , Vitamina K/antagonistas & inhibidores , Warfarina/efectos adversos , Warfarina/uso terapéutico
13.
N Engl J Med ; 386(1): 11-23, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34986284

RESUMEN

BACKGROUND: A single-group, phase 1-2 study indicated that eltrombopag improved the efficacy of standard immunosuppressive therapy that entailed horse antithymocyte globulin (ATG) plus cyclosporine in patients with severe aplastic anemia. METHODS: In this prospective, investigator-led, open-label, multicenter, randomized, phase 3 trial, we compared the efficacy and safety of horse ATG plus cyclosporine with or without eltrombopag as front-line therapy in previously untreated patients with severe aplastic anemia. The primary end point was a hematologic complete response at 3 months. RESULTS: Patients were assigned to receive immunosuppressive therapy (Group A, 101 patients) or immunosuppressive therapy plus eltrombopag (Group B, 96 patients). The percentage of patients who had a complete response at 3 months was 10% in Group A and 22% in Group B (odds ratio, 3.2; 95% confidence interval [CI], 1.3 to 7.8; P = 0.01). At 6 months, the overall response rate (the percentage of patients who had a complete or partial response) was 41% in Group A and 68% in Group B. The median times to the first response were 8.8 months (Group A) and 3.0 months (Group B). The incidence of severe adverse events was similar in the two groups. With a median follow-up of 24 months, a karyotypic abnormality that was classified as myelodysplastic syndrome developed in 1 patient (Group A) and 2 patients (Group B); event-free survival was 34% and 46%, respectively. Somatic mutations were detected in 29% (Group A) and 31% (Group Β) of the patients at baseline; these percentages increased to 66% and 55%, respectively, at 6 months, without affecting the hematologic response and 2-year outcome. CONCLUSIONS: The addition of eltrombopag to standard immunosuppressive therapy improved the rate, rapidity, and strength of hematologic response among previously untreated patients with severe aplastic anemia, without additional toxic effects. (Funded by Novartis and others; RACE ClinicalTrials.gov number, NCT02099747; EudraCT number, 2014-000363-40.).


Asunto(s)
Anemia Aplásica/terapia , Suero Antilinfocítico/uso terapéutico , Benzoatos/uso terapéutico , Ciclosporina/uso terapéutico , Hidrazinas/uso terapéutico , Terapia de Inmunosupresión , Inmunosupresores/uso terapéutico , Pirazoles/uso terapéutico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anemia Aplásica/tratamiento farmacológico , Anemia Aplásica/genética , Suero Antilinfocítico/efectos adversos , Benzoatos/efectos adversos , Ciclosporina/efectos adversos , Quimioterapia Combinada , Femenino , Humanos , Hidrazinas/efectos adversos , Inmunosupresores/efectos adversos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Prospectivos , Pirazoles/efectos adversos , Receptores de Trombopoyetina/agonistas , Inducción de Remisión , Adulto Joven
14.
Gastroenterology ; 166(1): 103-116.e9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37716376

RESUMEN

BACKGROUND & AIMS: CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS: In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS: Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-ß-catenin pathways. CONCLUSIONS: These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.


Asunto(s)
Colitis , Neoplasias del Colon , Animales , Humanos , Ratones , Proliferación Celular , Colitis/inducido químicamente , Colitis/metabolismo , Neoplasias del Colon/patología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Células Epiteliales/patología , Mucosa Intestinal/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
15.
Nature ; 572(7768): 260-264, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341286

RESUMEN

In humans, the adaptive immune system uses the exchange of information between cells to detect and eliminate foreign or damaged cells; however, the removal of unwanted cells does not always require an adaptive immune system1,2. For example, cell selection in Drosophila uses a cell selection mechanism based on 'fitness fingerprints', which allow it to delay ageing3, prevent developmental malformations3,4 and replace old tissues during regeneration5. At the molecular level, these fitness fingerprints consist of combinations of Flower membrane proteins3,4,6. Proteins that indicate reduced fitness are called Flower-Lose, because they are expressed in cells marked to be eliminated6. However, the presence of Flower-Lose isoforms at a cell's membrane does not always lead to elimination, because if neighbouring cells have similar levels of Lose proteins, the cell will not be killed4,6,7. Humans could benefit from the capability to recognize unfit cells, because accumulation of damaged but viable cells during development and ageing causes organ dysfunction and disease8-17. However, in Drosophila this mechanism is hijacked by premalignant cells to gain a competitive growth advantage18. This would be undesirable for humans because it might make tumours more aggressive19-21. It is unknown whether a similar mechanism of cell-fitness comparison is present in humans. Here we show that two human Flower isoforms (hFWE1 and hFWE3) behave as Flower-Lose proteins, whereas the other two isoforms (hFWE2 and hFWE4) behave as Flower-Win proteins. The latter give cells a competitive advantage over cells expressing Lose isoforms, but Lose-expressing cells are not eliminated if their neighbours express similar levels of Lose isoforms; these proteins therefore act as fitness fingerprints. Moreover, human cancer cells show increased Win isoform expression and proliferate in the presence of Lose-expressing stroma, which confers a competitive growth advantage on the cancer cells. Inhibition of the expression of Flower proteins reduces tumour growth and metastasis, and induces sensitivity to chemotherapy. Our results show that ancient mechanisms of cell recognition and selection are active in humans and affect oncogenic growth.


Asunto(s)
Canales de Calcio/metabolismo , Proliferación Celular , Proteínas de Drosophila/metabolismo , Neoplasias/patología , Isoformas de Proteínas/metabolismo , Animales , Canales de Calcio/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Drosophila melanogaster , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Isoformas de Proteínas/genética
16.
Nature ; 572(7770): 461-466, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31340216

RESUMEN

Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.


Asunto(s)
Migración Animal , Explotaciones Pesqueras/estadística & datos numéricos , Mapeo Geográfico , Océanos y Mares , Tiburones/fisiología , Análisis Espacio-Temporal , Animales , Densidad de Población , Medición de Riesgo , Tiburones/clasificación , Navíos , Factores de Tiempo
17.
J Biol Chem ; 299(5): 104656, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990216

RESUMEN

Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.


Asunto(s)
Alelos , Ataxia Telangiectasia , Reparación del ADN , Antígeno Nuclear de Célula en Proliferación , Temperatura , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Reparación del ADN/genética , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica/genética , Estabilidad Proteica , Cromatina/genética , Cromatina/metabolismo , Especificidad por Sustrato
18.
Kidney Int ; 105(3): 593-607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143038

RESUMEN

Collapsing glomerulopathy (CG) is most often associated with fast progression to kidney failure with an incidence apparently higher in Brazil than in other countries. However, the reason for this occurrence is unknown. To better understand this, we performed an integrated analysis of clinical, histological, therapeutic, causative genetic and genetic ancestry data in a highly genetically admixed cohort of 70 children and adult patients with idiopathic CG (ICG). The disease onset occurred at 23 (interquartile range: 17-31) years and approximately half of patients progressed to chronic kidney disease requiring kidney replacement therapy (CKD-KRT) 36 months after diagnosis. Causative genetic bases, assessed by targeted-gene panel or whole-exome sequencing, were identified in 58.6% of patients. Among these cases, 80.5% harbored APOL1 high-risk genotypes (HRG) and 19.5% causative Mendelian variants (MV). Self-reported non-White patients more frequently had HRG. MV was an independent risk factor for progression to CKD-KRT by 36 months and the end of follow-up, while remission was an independent protective factor. All patients with HRG manifested CG at 9-44 years of age, whereas in those with APOL1 low-risk genotype, the disease arose throughout life. HRGs were associated with higher proportion of African genetic ancestry. Novel causative MVs were identified in COL4A5, COQ2 and PLCE1 and previously described causative MVs were identified in MYH9, TRPC6, COQ2, COL4A3 and TTC21B. Three patients displayed HRG combined with a variant of uncertain significance (ITGB4, LAMA5 or PTPRO). MVs were associated with worse kidney prognosis. Thus, our data reveal that the genetic status plays a major role in ICG pathogenesis, accounting for more than half of cases in a highly admixed Brazilian population.


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Adulto , Niño , Humanos , Apolipoproteína L1/genética , Genotipo , Riñón/patología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factores de Riesgo , Adolescente , Adulto Joven
19.
Development ; 148(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33298460

RESUMEN

Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that are enriched for retro-transposons and piRNAs, and a rise in piRNA biogenesis signatures. Interestingly, no nuclear Piwi protein could be detected at any time point, indicating that the zebrafish piRNA pathway is fully cytoplasmic. Our data show that the post-migratory stage of zebrafish PGCs holds many cues to both germ cell fate establishment and piRNA pathway activation.


Asunto(s)
Núcleo Celular/genética , Células Germinativas/metabolismo , Transcripción Genética , Pez Cebra/genética , Animales , Núcleo Celular/ultraestructura , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Fertilización , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Células Germinativas/ultraestructura , Mutación/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Regulación hacia Arriba/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Cigoto/metabolismo
20.
Magn Reson Med ; 92(2): 741-750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38523462

RESUMEN

PURPOSE: To develop an open-source prototype of myocardial T1 mapping (Open-MOLLI) to improve accessibility to cardiac T1 mapping and evaluate its repeatability. With Open-MOLLI, we aim to enable faster implementation and testing of sequence modifications and to facilitate inter-scanner and cross-vendor reproducibility studies. METHODS: Open-MOLLI is an inversion-recovery sequence using a balanced SSFP (bSSFP) readout, with inversion and triggering schemes based on the 5(3)3 MOLLI sequence, developed in Pulseq. Open-MOLLI and MOLLI sequences were acquired in the ISMRM/NIST phantom and 21 healthy volunteers. In 18 of those subjects, Open-MOLLI and MOLLI were repeated in the same session (test-retest). RESULTS: Phantom T1 values were comparable between methods, specifically for the vial with reference T1 value most similar to healthy myocardium T1 (T1vial3 = 1027 ms): T1MOLLI = 1011 ± 24 ms versus T1Open-MOLLI = 1009 ± 20 ms. In vivo T1 estimates were similar between Open-MOLLI and MOLLI (T1MOLLI = 1004 ± 33 ms vs. T1Open-MOLLI = 998 ± 52 ms), with a mean difference of -17 ms (p = 0.20), despite noisier Open-MOLLI weighted images and maps. Repeatability measures were slightly higher for Open-MOLLI (RCMOLLI = 3.0% vs. RCOpen-MOLLI = 4.4%). CONCLUSION: The open-source sequence Open-MOLLI can be used for T1 mapping in vivo with similar mean T1 values to the MOLLI method. Open-MOLLI increases the accessibility to cardiac T1 mapping, providing also a base sequence to which further improvements can easily be added and tested.


Asunto(s)
Fantasmas de Imagen , Humanos , Reproducibilidad de los Resultados , Adulto , Masculino , Femenino , Algoritmos , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Adulto Joven , Miocardio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA