Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646847

RESUMEN

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Asunto(s)
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Animales , Abejas/microbiología , Ácidos Grasos Volátiles/metabolismo , Genoma Bacteriano , Microbiología de Alimentos , Metagenómica , Vitaminas/metabolismo , Filogenia
2.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38294252

RESUMEN

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Asunto(s)
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
3.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123315

RESUMEN

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Asunto(s)
Bifidobacterium , Multiómica , Humanos , Lactante , Bifidobacterium/genética , Reproducibilidad de los Resultados , Heces/microbiología , Metagenómica , Bacterias
4.
Appl Environ Microbiol ; 88(12): e0052222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35652662

RESUMEN

Amoxicillin-clavulanic acid (AMC) is the most widely used antibiotic, being frequently prescribed to infants. Particular members of the genus Bifidobacterium are among the first microbial colonizers of the infant gut, and it has been demonstrated that they exhibit various activities beneficial for their human host, including promotion/maintenance of the human gut microbiota homeostasis. It has been shown that natural resistance of bifidobacteria to AMC is limited to a small number of strains. In the current study, we investigated the mitigation effects of AMC-resistant bifidobacteria in diversity preservation of the gut microbiota during AMC treatment. To this end, an in vitro coculture experiment based on infant fecal samples and an in vivo study employing a rodent model were performed. The results confirmed the ability of AMC-resistant bifidobacterial strains to bolster gut microbiota resilience, while specific covariance analysis revealed strain-specific and variable impacts on the microbiota composition by individual bifidobacterial taxa. IMPORTANCE The first microbial colonizers of the infant gut are members of the genus Bifidobacterium, which exhibit different activities beneficial to their host. Amoxicillin-clavulanic acid (AMC) is the most frequently prescribed antibiotic during infancy, and few strains of bifidobacteria are known to show a natural resistance to this antibiotic. In the present work, we evaluated the possible positive effects of AMC-resistant bifidobacterial strains in maintaining gut microbiota diversity during AMC exposure, performing an in vitro and in vivo experiment based on an infant gut model and a rodent model, respectively. Our results suggested the ability of AMC-resistant bifidobacterial strains to support gut microbiota restoration.


Asunto(s)
Bifidobacterium , Microbioma Gastrointestinal , Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Antibacterianos/farmacología , Heces/microbiología , Humanos , Lactante
5.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33579685

RESUMEN

Vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the vaginal microbiota is dominated by members of the Lactobacillus genus, whose relative abundance and microbial taxa composition are dependent on the healthy status of this human body site. Particularly, among members of this genus, the high prevalence of Lactobacillus crispatus is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 healthy vaginal microbiome samples through shotgun metagenomics analyses. Based on our results we observed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Therefore, we isolated fifteen L. crispatus strains from different environments in which this species is abounding, ranging from vaginal swabs of healthy women to chicken fecal samples. The genomes of these strains were decoded and their genetic content was analyzed and correlated with their physiological features. An extensive comparative genomic analysis encompassing all publicly available genome sequences of L. crispatus and combined with those decoded in this study, revealed a genetic adaptation of strains to their ecological niche. In addition, in vitro growth experiments involving all isolated L. crispatus strains together with a synthetic vaginal microbiota reveal how this species is able to modulate the composition of the vaginal microbial consortia at strain level. Overall, our findings suggest that L. crispatus plays an important ecological role in reducing the complexity of the vaginal microbiota by depleting pathogenic bacteria.Importance The vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the high prevalence of Lactobacillus crispatus species is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 public healthy vaginal samples through shotgun metagenomics analyses. Results showed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Moreover, we isolated and sequenced the genome of new L. crispatus strains from different environments and the comparative genomics analysis revealed a genetic adaptation of strains to their ecological niche. In addition, in-vitro growth experiments display the capability of this species to modulate the composition of the vaginal microbial consortia. Overall, our findings suggest an ecological role exploited by L. crispatus in reducing the complexity of the vaginal microbiota toward a depletion of pathogenic bacteria.

6.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33483308

RESUMEN

Amoxicillin-clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding 6 months. Moreover, we evaluated AMC sensitivity by MIC test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains that exhibit a high level of AMC insensitivity, which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch cultures.IMPORTANCE Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, which also affected the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genomes revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in vitro experiments revealed that one strain, i.e., Bifidobacterium breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.


Asunto(s)
Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Antibacterianos/farmacología , Bifidobacterium/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Bifidobacterium/genética , Niño , Preescolar , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante
7.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32948523

RESUMEN

In recent years, various studies have demonstrated that the gut microbiota influences host metabolism. However, these studies were focused primarily on a single or a limited range of host species, thus preventing a full exploration of possible taxonomic and functional adaptations by gut microbiota members as a result of host-microbe coevolution events. In the current study, the microbial taxonomic profiles of 250 fecal samples, corresponding to 77 host species that cover the mammalian branch of the tree of life, were reconstructed by 16S rRNA gene-based sequence analysis. Moreover, shotgun metagenomics was employed to investigate the metabolic potential of the fecal microbiomes of 24 mammals, and subsequent statistical analyses were performed to assess the impact of host diet and corresponding physiology of the digestive system on gut microbiota composition and functionality. Functional data were confirmed and extended through metatranscriptome assessment of gut microbial populations of eight animals, thus providing insights into the transcriptional response of gut microbiota to specific dietary lifestyles. Therefore, the analyses performed in this study support the notion that the metabolic features of the mammalian gut microbiota have adapted to maximize energy extraction from the host's diet.IMPORTANCE Diet and host physiology have been recognized as main factors affecting both taxonomic composition and functional features of the mammalian gut microbiota. However, very few studies have investigated the bacterial biodiversity of mammals by using large sample numbers that correspond to multiple mammalian species, thus resulting in an incomplete understanding of the functional aspects of their microbiome. Therefore, we investigated the bacterial taxonomic composition of 250 fecal samples belonging to 77 host species distributed along the tree of life in order to assess how diet and host physiology impact the intestinal microbial community by selecting specific microbial players. Conversely, the application of shotgun metagenomics and metatranscriptomics approaches to a group of selected fecal samples allowed us to shed light on both metabolic features and transcriptional responses of the intestinal bacterial community based on different diets.


Asunto(s)
Bacterias/aislamiento & purificación , Dieta/veterinaria , Heces/microbiología , Microbioma Gastrointestinal , Mamíferos/microbiología , Mamíferos/fisiología , Animales , Bacterias/clasificación , Perfilación de la Expresión Génica/veterinaria , Metagenómica , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Especificidad de la Especie
8.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32303552

RESUMEN

Among the bacterial genera that are used for cheese production, Lactobacillus is a key taxon of high industrial relevance that is commonly present in commercial starter cultures for dairy fermentations. Certain lactobacilli play a defining role in the development of the organoleptic features during the ripening stages of particular cheeses. We performed an in-depth 16S rRNA gene-based microbiota analysis coupled with internally transcribed spacer-mediated Lactobacillus compositional profiling of 21 common Italian cheeses produced from raw milk in order to evaluate the ecological distribution of lactobacilli associated with this food matrix. Statistical analysis of the collected data revealed the existence of putative Lactobacillus community state types (LCSTs), which consist of clusters of Lactobacillus (sub)species. Each LCST is dominated by one or two taxa that appear to represent keystone elements of an elaborate network of positive and negative interactions with minor components of the cheese microbiota. The results obtained in this study reveal the existence of peculiar cheese microbiota assemblies that represent intriguing targets for further functional studies aimed at dissecting the species-specific role of bacteria in cheese manufacturing.IMPORTANCE The microbiota is known to play a key role in the development of the organoleptic features of dairy products. Lactobacilli have been reported to represent one of the main components of the nonstarter bacterial population, i.e., bacteria that are not deliberately added to the milk, harbored by cheese, although the species-level composition of this microbial population has never been assessed in detail. In the present study, we applied a recently developed metagenomic approach that employs an internally transcribed spacer to profile the Lactobacillus population harbored by cheese produced from raw milk at the (sub)species level. The obtained data revealed the existence of particular Lactobacillus community state types consisting of clusters of Lactobacillus (sub)species that tend to cooccur in the screened cheeses. Moreover, analysis of covariances between members of this genus indicate that these taxa form an elaborate network of positive and negative interactions that define specific clusters of covariant lactobacilli.


Asunto(s)
Queso/microbiología , Lactobacillus/fisiología , Leche/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Italia , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Microbiota , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
9.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005736

RESUMEN

During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying Bacteroides, Fusobacterium, and Prevotella 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa.IMPORTANCE Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.


Asunto(s)
Bifidobacterium/aislamiento & purificación , Gatos/microbiología , Perros/microbiología , Microbioma Gastrointestinal , Animales , ADN Espaciador Ribosómico/análisis , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
10.
Int J Syst Evol Microbiol ; 70(4): 2288-2297, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32065574

RESUMEN

Two Bifidobacterium strains, i.e., 2176BT and 2177BT, were isolated from Golden-Headed Lion Tamarin (Leontopithecus chrysomelas) and Goeldi's monkey (Callimico goeldii). Isolates were shown to be Gram-positive, non-motile, non-sporulating, facultative anaerobic and d-fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2176BT and 2177BT exhibit close phylogenetic relatedness to Bifidobacterium felsineum DSM 103139T and Bifidobacterium bifidum LMG 11041T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium cebidarum sp. nov. (2176BT=LMG 31469T=CCUG 73785T) and Bifidobacterium leontopitheci sp. nov. (2177BT=LMG 31471T=CCUG 73786T are proposed as novel Bifidobacterium species.


Asunto(s)
Bifidobacterium/clasificación , Callimico/microbiología , Leontopithecus/microbiología , Filogenia , Aldehído-Liasas , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Secuencia de Bases , Bifidobacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Genes Bacterianos , Peptidoglicano/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709821

RESUMEN

Bifidobacteria are members of the gut microbiota of animals, including mammals, birds, and social insects. In this study, we analyzed and determined the pangenome of Bifidobacterium animalis species, encompassing B. animalis subsp. animalis and the B. animalis subsp. lactis taxon, which is one of the most intensely exploited probiotic bifidobacterial species. In order to reveal differences within the B. animalis species, detailed comparative genomics and phylogenomics analyses were performed, indicating that these two subspecies recently arose through divergent evolutionary events. A subspecies-specific core genome was identified for both B. animalis subspecies, revealing the existence of subspecies-defining genes involved in carbohydrate metabolism. Notably, these in silico analyses coupled with carbohydrate profiling assays suggest genetic adaptations toward a distinct glycan milieu for each member of the B. animalis subspecies, resulting in a divergent evolutionary development of the two subspecies.IMPORTANCE The majority of characterized B. animalis strains have been isolated from human fecal samples. In order to explore genome variability within this species, we isolated 15 novel strains from the gastrointestinal tracts of different animals, including mammals and birds. The present study allowed us to reconstruct the pangenome of this taxon, including the genome contents of 56 B. animalis strains. Through careful assessment of subspecies-specific core genes of the B. animalis subsp. animalis/lactis taxon, we identified genes encoding enzymes involved in carbohydrate transport and metabolism, while unveiling specific gene acquisition and loss events that caused the evolutionary emergence of these two subspecies.


Asunto(s)
Bifidobacterium animalis/genética , Hibridación Genómica Comparativa , Evolución Molecular , Genes Bacterianos/genética , Filogenia , Animales , Bifidobacterium/genética , Bifidobacterium animalis/enzimología , Bifidobacterium animalis/metabolismo , Aves , Metabolismo de los Hidratos de Carbono , Carbohidratos , Heces/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Variación Genética , Genoma Bacteriano/genética , Humanos , Mamíferos , Polisacáridos , Especificidad de la Especie
12.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737347

RESUMEN

Bifidobacteria are commensals of the animal gut and are commonly found in mammals, birds, and social insects. Specifically, strains of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudolongum are widely distributed in the mammalian gut. In this context, we investigated the genetic variability and metabolic abilities of the B. pseudolongum taxon, whose genomic characterization has so far not received much attention. Phylogenomic analysis of the genome sequences of 60 B. pseudolongum strains revealed that B. pseudolongum subsp. globosum and B. pseudolongum subsp. pseudolongum may actually represent two distinct bifidobacterial species. Furthermore, our analysis highlighted metabolic differences between members of these two subspecies. Moreover, comparative analyses of genetic strategies to prevent invasion of foreign DNA revealed that the B. pseudolongum subsp. globosum group exhibits greater genome plasticity. In fact, the obtained findings indicate that B. pseudolongum subsp. globosum is more adaptable to different ecological niches such as the mammalian and avian gut than is B. pseudolongum subsp. pseudolongumIMPORTANCE Currently, little information exists on the genetics of the B. pseudolongum taxon due to the limited number of sequenced genomes belonging to this species. In order to survey genome variability within this species and explore how members of this taxon evolved as commensals of the animal gut, we isolated and decoded the genomes of 51 newly isolated strains. Comparative genomics coupled with growth profiles on different carbohydrates has further provided insights concerning the genotype and phenotype of members of the B. pseudolongum taxon.


Asunto(s)
Bifidobacterium/genética , Microbioma Gastrointestinal/genética , Variación Genética , Genoma Bacteriano , Genómica , Animales , Bifidobacterium/clasificación , Bifidobacterium/aislamiento & purificación , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , ADN Bacteriano/genética , Ecosistema , Microbioma Gastrointestinal/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Filogenia , Simbiosis
13.
Int J Syst Evol Microbiol ; 69(5): 1288-1298, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30789326

RESUMEN

Five Bifidobacterium strains, i.e. 2020BT, 2028BT, 2033BT, 2034BT and 2036BT, were isolated from European beaver (Castor fiber), Goeldi's marmoset (Callimicogoeldii), black-capped squirrel monkey (Saimiriboliviensissubsp. peruviensis) and Patagonian mara (Dolichotispatagonum). All of these isolates were shown to be Gram-positive, facultative anaerobic, d-fructose 6-phosphate phosphoketolase-positive, non-motile and non-sporulating. Phylogenetic analyses based on 16S rRNA gene sequences, multilocus sequences (including hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that bifidobacterial strains 2020BT, 2028BT, 2033BT, 2034BT and 2036BT exhibit close phylogenetic relatedness to Bifidobacterium biavatii DSM 23969T, Bifidobacterium bifidum LMG 11041T, Bifidobacterium choerinum LMG 10510T, Bifidobacterium gallicum LMG 11596T, Bifidobacterium imperatoris LMG 30297T, Bifidobacterium italicum LMG 30187T and Bifidobacterium vansinderenii LMG 30126T, respectively. Further genotyping based on the genome sequence of the isolated strains combined with phenotypic analyses, clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, Bifidobacterium castoris sp. nov. (2020BT=LMG 30937T=CCUG 72816T), Bifidobacterium callimiconis sp. nov. (2028BT=LMG 30938T=CCUG 72814T), Bifidobacterium samirii sp. nov. (2033BT=LMG 30940T=CCUG 72817T), Bifidobacterium goeldii sp. nov. (2034BT=LMG 30939T=CCUG 72815T) and Bifidobacterium dolichotidis sp. nov. (2036BT=LMG 30941T=CCUG 72818T) are proposed as novel Bifidobacterium species.


Asunto(s)
Bifidobacterium/clasificación , Callithrix/microbiología , Filogenia , Roedores/microbiología , Saimiri/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Heces/microbiología , Genes Bacterianos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29728382

RESUMEN

The genus Lactobacillus is a widespread taxon, members of which are highly relevant to functional and fermented foods, while they are also commonly present in host-associated gut and vaginal microbiota. Substantial efforts have been undertaken to disclose the genetic repertoire of all members of the genus Lactobacillus, and yet their species-level profiling in complex matrices is still undeveloped due to the poor phylotype resolution of profiling approaches based on the 16S rRNA gene. To overcome this limitation, an internal transcribed spacer (ITS)-based profiling method was developed to accurately profile lactobacilli at the species level. This approach encompasses a genus-specific primer pair combined with a database of ITS sequences retrieved from all available Lactobacillus genomes and a script for the QIIME software suite that performs all required steps to reconstruct a species-level profile. This methodology was applied to several environments, i.e., human gut and vagina and the ceca of free-range chickens, as well as whey and fresh cheese. Interestingly, the data collected confirmed a relevant role of lactobacilli present in functional and fermented foods in defining the population harbored by the human gut, while, unsurprisingly perhaps, the ceca of free-range chickens were observed to be dominated by lactobacilli characterized in birds living in natural environments. Moreover, vaginal swabs confirmed the existence of previously hypothesized community state types, while analysis of whey and fresh cheese revealed a dominant presence of single Lactobacillus species used as starters for cheese production. Furthermore, application of this ITS profiling method to a mock Lactobacillus community allowed a minimal resolution level of <0.006 ng/µl.IMPORTANCE The genus Lactobacillus is a large and ubiquitous taxon of high scientific and commercial relevance. Despite the fact that the genetic repertoire of Lactobacillus species has been extensively characterized, the ecology of this genus has been explored by metataxonomic techniques that are accurate down to the genus or phylogenetic group level only. Thus, the distribution of lactobacilli in environmental or processed food samples is relatively unexplored. The profiling protocol described here relies on the use of the internal transcribed spacer to perform an accurate classification in a target population of lactobacilli with a <0.006-ng/µl sensitivity. This approach was used to analyze five sample types collected from both human and animal host-associated microbiota, as well as from the cheese production chain. The availability of a tool for species-level profiling of lactobacilli may be highly useful for both academic research and a wide range of industrial applications.


Asunto(s)
Lactobacillus/genética , Lactobacillus/metabolismo , Metagenómica , Animales , Queso/microbiología , Pollos , ADN Bacteriano/genética , Femenino , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped , Humanos , Lactobacillus/clasificación , ARN Ribosómico 16S/genética , Vagina/microbiología
15.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864179

RESUMEN

The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. IMPORTANCE: The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria and evaluated their genetic mobility to other human gut commensal microorganisms.


Asunto(s)
Antibacterianos/farmacología , Bifidobacterium/genética , Farmacorresistencia Microbiana/genética , Tracto Gastrointestinal/microbiología , Genes Bacterianos/genética , Bifidobacterium/efectos de los fármacos , Humanos
16.
Int J Syst Evol Microbiol ; 67(10): 3987-3995, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28893355

RESUMEN

A novel Bifidobacterium strain, Tam10BT, i.e. LMG 30126T, was isolated from emperor tamarin (Saguinus imperator). Cells were Gram-positive, non-motile, non-sporulating, non-haemolytic, facultative anaerobic and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on 16S rRNA genes as well as multilocus sequences (representing hsp60, rpoB, dnaJ, dnaG and clpC genes) and the core genome revealed that Bifidobacterium Tam10BT exhibited close phylogenetic relatedness to Bifidobacterium tissieri DSM 100201T. Comparative analysis of 16S rRNA gene sequences confirmed the phylogenetic results showing the highest gene sequence identity with strain B. tissieri DSM 100201T (96.5 %). Furthermore, genotyping based on the genome sequence of Tam 10B, in combination with phenotypic analyses, clearly showed that strain Tam10BT is distinct from each of the type strains of the so far recognized Bifidobacterium species. The type strain Tam10BT (=LMG 30126T=CCUG 70655T) represents a novel species, for which the name Bifidobacteriumvansinderenii sp. nov is proposed.


Asunto(s)
Bifidobacterium/clasificación , Filogenia , Saguinus/microbiología , Aldehído-Liasas/genética , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Genes Bacterianos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38782729

RESUMEN

Periodontal diseases are among the most common bacterial-related pathologies affecting the oral cavity of dogs. Nevertheless, the canine oral ecosystem and its correlations with oral disease development are still far from being fully characterized. In this study, the species-level taxonomic composition of saliva and dental plaque microbiota of 30 healthy dogs was investigated through a shallow shotgun metagenomics approach. The obtained data allowed not only to define the most abundant and prevalent bacterial species of the oral microbiota in healthy dogs, including members of the genera Corynebacterium and Porphyromonas, but also to identify the presence of distinct compositional motifs in the two oral microniches as well as taxonomical differences between dental plaques collected from anterior and posterior teeth. Subsequently, the salivary and dental plaque microbiota of 18 dogs affected by chronic gingival inflammation and 18 dogs with periodontitis were compared to those obtained from the healthy dogs. This analysis allowed the identification of bacterial and metabolic biomarkers correlated with a specific clinical status, including members of the genera Porphyromonas and Fusobacterium as microbial biomarkers of a healthy and diseased oral status, respectively, and genes predicted to encode for metabolites with anti-inflammatory properties as metabolic biomarkers of a healthy status.


Asunto(s)
Bacterias , Biomarcadores , Placa Dental , Enfermedades de los Perros , Microbiota , Enfermedades Periodontales , Saliva , Animales , Perros , Saliva/microbiología , Placa Dental/microbiología , Enfermedades Periodontales/microbiología , Enfermedades Periodontales/veterinaria , Enfermedades de los Perros/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Porphyromonas/genética , Porphyromonas/aislamiento & purificación , Metagenómica , Boca/microbiología , Masculino
18.
Front Microbiol ; 15: 1349391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426063

RESUMEN

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

19.
Microb Biotechnol ; 16(9): 1774-1789, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37491806

RESUMEN

The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health-promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein-encoding genes shared across a human-derived L. crispatus strain selection, which includes 200 currently available human-derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra-species micro-diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi-strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable.


Asunto(s)
Lactobacillus crispatus , Vagina , Lactobacillus crispatus/clasificación , Lactobacillus crispatus/genética , Lactobacillus crispatus/crecimiento & desarrollo , Lactobacillus crispatus/metabolismo , Genoma Bacteriano , Evolución Molecular , Vagina/química , Vagina/microbiología , Humanos , Femenino , Lactobacillus/clasificación , Lactobacillus/genética , Metabolismo de los Hidratos de Carbono
20.
mSystems ; 8(1): e0106822, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688869

RESUMEN

Raw milk cheese manufactory is strictly regulated in Europe by the Protected Designation of Origin (PDO) quality scheme, which protects indigenous food products based on geographical and biotechnological features. This study encompassed the collection of 128 raw milk cheese samples across Italy to investigate the resident microbiome correlated to current PDO specifications. Shotgun metagenomic approaches highlighted how the microbial communities are primarily linked to each cheesemaking site and consequently to the use of site-specific Natural Whey Cultures (NWCs), defined by a multifactorial set of local environmental factors rather than solely by cheese type or geographical origin that guide the current PDO specification. Moreover, in-depth functional characterization of Cheese Community State Types (CCSTs) and comparative genomics efforts, including metagenomically assembled genomes (MAGs) of the dominant microbial taxa, revealed NWCs-related unique enzymatic profiles impacting the organoleptic features of the produced cheeses and availability of bioactive compounds to consumers, with putative health implications. Thus, these results highlighted the need for a profound rethinking of the current PDO designation with a focus on the production site-specific microbial metabolism to understand and guarantee the organoleptic features of the final product recognized as PDO. IMPORTANCE The Protected Designation of Origin (PDO) guarantees the traceability of food production processes, and that the production takes place in a well-defined restricted geographical area. Nevertheless, the organoleptic qualities of the same dairy products, i.e., cheeses under the same PDO denomination, differ between manufacturers. The final product's flavor and qualitative aspects can be related to the resident microbial population, not considered by the PDO denomination. Here, we analyzed a complete set of different Italian cheeses produced from raw milk through shotgun sequencing in order to study the variability of the different microbial profiles resident in Italian PDO cheeses. Furthermore, an in-depth functional analysis, along with a comparative genomic analysis, was performed in order to correlate the taxonomic information with the organoleptic properties of the final product. This analysis made it possible to highlight how the PDO denomination should be revisited to understand the effect that Natural Whey Cultures (NWCs), used in the traditional production of raw milk cheese and unique to each manufacturer, impacts on the organoleptic features of the final product.


Asunto(s)
Queso , Microbiota , Animales , Queso/análisis , Leche/química , Microbiota/genética , Manipulación de Alimentos/métodos , Proteína de Suero de Leche/análisis , Italia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA