Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Stroke ; 52(11): 3680-3691, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34694864

RESUMEN

Background and Purpose: NCX3 (Na+-Ca2+ exchanger 3) plays a relevant role in stroke; indeed its pharmacological blockade or its genetic ablation exacerbates brain ischemic damage, whereas its upregulation takes part in the neuroprotection elicited by ischemic preconditioning. To identify an effective strategy to induce an overexpression of NCX3, we examined transcription factors and epigenetic mechanisms potentially involved in NCX3 gene regulation. Methods: Brain ischemia and ischemic preconditioning were induced in vitro by exposure of cortical neurons to oxygen and glucose deprivation plus reoxygenation (OGD/Reoxy) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcripts and proteins of GATA3 (GATA-binding protein 3), KMT2A (lysine-methyltransferase-2A), and NCX3. GATA3 and KMT2A binding on NCX3 gene was evaluated by chromatin immunoprecipitation and Rechromatin immunoprecipitation experiments. Results: Among the putative transcription factors sharing a consensus sequence on the ncx3 brain promoter region, GATA3 was the only able to up-regulate ncx3. Interestingly, GATA3 physically interacted with KMT2A, and their overexpression or knocking-down increased or downregulated NCX3 mRNA and protein, respectively. Notably, site-direct mutagenesis of GATA site on ncx3 brain promoter region counteracted GATA3 and KMT2A binding on NCX3 gene. More importantly, we found that in the perischemic cortical regions of preconditioned rats GATA3 recruited KMT2A and the complex H3K4-3me (trimethylated lysine-4 of histone-3) on ncx3 brain promoter region, thus reducing transient middle cerebral artery occlusion­induced damage. Consistently, in vivo silencing of either GATA3 or KMT2A prevented NCX3 upregulation and consequently the neuroprotective effect of preconditioning stimulus. The involvement of GATA3/KMT2A complex in neuroprotection elicited by ischemic preconditioning was further confirmed by in vitro experiments in which the knocking-down of GATA3 and KMT2A reverted the neuroprotection induced by NCX3 overexpression in cortical neurons exposed to anoxic preconditioning followed by oxygen and glucose deprivation plus reoxygenation. Conclusions: Collectively, our results revealed that GATA3/KMT2A complex epigenetically activates NCX3 gene transcription during ischemic preconditioning.


Asunto(s)
Factor de Transcripción GATA3/metabolismo , Regulación de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Precondicionamiento Isquémico , Neuroprotección/fisiología , Intercambiador de Sodio-Calcio/biosíntesis , Animales , Encéfalo/irrigación sanguínea , Isquemia Encefálica/metabolismo , Histonas/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
2.
Neurobiol Dis ; 159: 105480, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34411705

RESUMEN

Imbalance in cellular ionic homeostasis is a hallmark of several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS). Sodium-calcium exchanger (NCX) is a membrane antiporter that, operating in a bidirectional way, couples the exchange of Ca2+ and Na + ions in neurons and glial cells, thus controlling the intracellular homeostasis of these ions. Among the three NCX genes, NCX1 and NCX2 are widely expressed within the CNS, while NCX3 is present only in skeletal muscles and at lower levels of expression in selected brain regions. ALS mice showed a reduction in the expression and activity of NCX1 and NCX2 consistent with disease progression, therefore we aimed to investigate their role in ALS pathophysiology. Notably, we demonstrated that the pharmacological activation of NCX1 and NCX2 by the prolonged treatment of SOD1G93A mice with the newly synthesized compound neurounina: (1) prevented the reduction in NCX activity observed in spinal cord; (2) preserved motor neurons survival in the ventral spinal horn of SOD1G93A mice; (3) prevented the spinal cord accumulation of misfolded SOD1; (4) reduced astroglia and microglia activation and spared the resident microglia cells in the spinal cord; (5) improved the lifespan and mitigated motor symptoms of ALS mice. The present study highlights the significant role of NCX1 and NCX2 in the pathophysiology of this neurodegenerative disorder and paves the way for the design of a new pharmacological approach for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Benzodiazepinonas/farmacología , Neuronas Motoras/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Fármacos Neuroprotectores/farmacología , Pirrolidinas/farmacología , Intercambiador de Sodio-Calcio/agonistas , Médula Espinal/efectos de los fármacos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Humanos , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/fisiopatología , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Tasa de Supervivencia
3.
Mol Ther ; 28(4): 1154-1166, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32075715

RESUMEN

Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting infants caused by alterations of the survival motor neuron gene, which results in progressive degeneration of motor neurons (MNs). Although an effective treatment for SMA patients has been recently developed, the molecular pathway involved in selective MN degeneration has not been yet elucidated. In particular, miR-206 has been demonstrated to play a relevant role in the regeneration of neuromuscular junction in several MN diseases, and particularly it is upregulated in the quadriceps, tibialis anterior, spinal cord, and serum of SMA mice. In the present paper, we demonstrated that miR-206 was transiently upregulated also in the brainstem of the mouse model of SMA, SMAΔ7, in the early phase of the disease paralleling MN degeneration and was down-regulated in the late symptomatic phase. To prevent this downregulation, we intracerebroventricularly injected miR-206 in SMA pups, demonstrating that miR-206 reduced the severity of SMA pathology, slowing down disease progression, increasing survival rate, and improving behavioral performance of mice. Interestingly, exogenous miRNA-206-induced upregulation caused a reduction of the predicted target sodium calcium exchanger isoform 2, NCX2, one of the main regulators of intracellular [Ca2+] and [Na+]. Therefore, we hypothesized that miR-206 might exert part of its neuroprotective effect modulating NCX2 expression in SMA disease.


Asunto(s)
Tronco Encefálico/metabolismo , MicroARNs/genética , Intercambiador de Sodio-Calcio/genética , Atrofias Musculares Espinales de la Infancia/terapia , Animales , Tronco Encefálico/patología , Calcio/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Homeostasis , Humanos , Ratones , MicroARNs/administración & dosificación , MicroARNs/farmacología , Índice de Severidad de la Enfermedad , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/fisiopatología , Regulación hacia Arriba
4.
Stroke ; 47(4): 1085-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26979866

RESUMEN

BACKGROUND AND PURPOSE: The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning. In this study, we evaluated whether NCX3 is a target for sumoylation and whether this posttranslational modification participates in ischemic preconditioning-induced neuroprotection. To test these hypotheses, we analyzed (1) SUMO1 conjugation pattern after ischemic preconditioning; (2) the effect of SUMO1 knockdown on the ischemic damage after transient middle cerebral artery occlusion and ischemic preconditioning, (3) the possible interaction between SUMO1 and NCX3 and (4) the molecular determinants of NCX3 sequence responsible for sumoylation. METHODS: Focal brain ischemia and ischemic preconditioning were induced in rats by middle cerebral artery occlusion. SUMOylation was evaluated by western blot and immunohistochemistry. SUMO1 and NCX3 interaction was analyzed by site-directed mutagenesis and immunoprecipitation assay. RESULTS: We found that (1) SUMO1 knockdown worsened ischemic damage and reduced the protective effect of preconditioning; (2) SUMO1 bound to NCX3 at lysine residue 590, and its silencing increased NCX3 degradation; and (3) NCX3 sumoylation participates in SUMO1 protective role during ischemic preconditioning. Thus, our results demonstrate that NCX3 sumoylation confers additional neuroprotection in ischemic preconditioning. CONCLUSIONS: Finally, this study suggests that NCX3 sumoylation might be a new target to enhance ischemic preconditioning-induced neuroprotection.


Asunto(s)
Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Precondicionamiento Isquémico , Neuroprotección/fisiología , Proteína SUMO-1/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Encéfalo/patología , Infarto de la Arteria Cerebral Media/patología , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Sumoilación
5.
Toxicol Appl Pharmacol ; 288(3): 387-98, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26307266

RESUMEN

Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.


Asunto(s)
Silenciador del Gen , Neuronas/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Estilbenos/farmacología , Animales , Carbazoles/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Humanos , Neuronas/citología , Regiones Promotoras Genéticas , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Resveratrol , Transducción de Señal , Sirtuina 1/genética
6.
iScience ; 27(3): 108959, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361619

RESUMEN

Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.

7.
Mol Ther Nucleic Acids ; 35(1): 102131, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38379726

RESUMEN

MicroRNA (miRNA), by post-transcriptionally regulating the expression of genes involved in stroke response, represents important effectors in stroke pathophysiology. Recently, the 103/107 miRNA family emerged as a possible therapeutic target in stroke, as it controls the expression of sodium calcium exchanger 1, a plasma membrane transporter that plays a fundamental role in stroke pathophysiology. Although the neuroprotective properties of this and other miRNAs are promising, several pharmacokinetic drawbacks remain to be faced for the development of a translatable therapy based on small RNAs in CNS diseases. In the present study, to overcome these limitations, the anti-miRNA103/107 was encapsulated in specific preparations of lipid nanoparticles (LNPs), and their effectiveness was evaluated both in an in vitro model of hypoxia represented by primary neuronal cortical cultures exposed to oxygen and glucose deprivation followed by reoxygenation, and in an in vivo model of stroke obtained in rats exposed to transient occlusion of the middle cerebral artery. The results of the present study demonstrated that the encapsulation of anti-miRNA103/107 in transferrin-conjugated PEG-stabilized LNPs allowed the blood-brain barrier crossing and significantly reduced brain ischemic damage. The present achievements pave the way for the exploitation of a systemic intravenous miRNA delivery strategy in stroke therapy.

8.
J Am Heart Assoc ; 13(6): e030460, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456444

RESUMEN

BACKGROUND: REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS: Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS: If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.


Asunto(s)
Neuroblastoma , Accidente Cerebrovascular , Humanos , Ratones , Masculino , Animales , Metilación de ADN , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Encéfalo/metabolismo , Epigénesis Genética , ADN
9.
Neurobiol Dis ; 52: 104-16, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23220622

RESUMEN

In Huntington's disease (HD) mutant huntingtin protein impairs the function of several transcription factors, in particular the cAMP response element-binding protein (CREB). CREB activation can be increased by targeting phosphodiesterases such as phospohodiesterase 4 (PDE4) and phosphodiesterase 10A (PDE10A). Indeed, both PDE4 inhibition (DeMarch et al., 2008) and PDE10A inhibition (Giampà et al., 2010) proved beneficial in the R6/2 mouse model of HD. However, Hebb et al. (2004) reported PDE10A decline in R6/2 mice. These findings raise the issue of how PDE10A inhibition is beneficial in HD if such enzyme is lost. R6/2 mice and their wild type littermates were treated with the PDE10A inhibitor TP10 (a gift from Pfizer) or saline, sacrificed at 5, 9, and 13 weeks of age, and single and double label immunohistochemistry and western blotting were performed. PDE10A increased dramatically in the spiny neurons of R6/2 compared to the wild type mice. Conversely, in the striatal cholinergic interneurons, PDE10A was lower and it did not change significantly with disease progression. In the other subsets of striatal interneurons (namely, parvalbuminergic, somatostatinergic, and calretininergic interneurons) PDE10A immunoreactivity was higher in the R6/2 compared to the wild-type mice. In the TP10 treated R6/2, PDE10A levels were lower than in the saline treated mice in the medium spiny neurons, whereas they were higher in all subsets of striatal interneurons except for the cholinergic ones. However, in the whole striatum densitometry studies, PDE10A immunoreactivity was lower in the R6/2 compared to the wild-type mice. Our study demonstrates that PDE10A is increased in the spiny neurons of R6/2 mice striatum. Thus, the accumulation of PDE10A in the striatal projection neurons, by hydrolyzing greater amounts of cyclic nucleotides, is likely to contribute to cell damage in HD. Consequently, the beneficial effect of TP10 in HD models (Giampà et al., 2009, 2010) is explained by the efficiency of such compound in counteracting this phenomenon and therefore increasing the availability of cyclic nucleotides.


Asunto(s)
Cuerpo Estriado/enzimología , Enfermedad de Huntington/enzimología , Neuronas/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , Pirazoles/farmacología , Quinolinas/farmacología
10.
Int J Biol Sci ; 19(9): 2695-2710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324938

RESUMEN

Background: The inhibition of histone deacetylase 9 (HDAC9) represents a promising druggable target for stroke intervention. Indeed, HDAC9 is overexpressed in neurons after brain ischemia where exerts a neurodetrimental role. However, mechanisms of HDAC9-dependent neuronal cell death are not yet well established. Methods: Brain ischemia was obtained in vitro by primary cortical neurons exposed to glucose deprivation plus reoxygenation (OGD/Rx) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcript and protein levels. Chromatin immunoprecipitation was used to evaluate the binding of transcription factors to the promoter of target genes. Cell viability was measured by MTT and LDH assays. Ferroptosis was evaluated by iron overload and 4-hydroxynonenal (4-HNE) release. Results: Our results showed that HDAC9 binds to hypoxia-inducible factor 1 (HIF-1) and specificity protein 1 (Sp1), two transcription activators of transferrin 1 receptor (TfR1) and glutathione peroxidase 4 (GPX4) genes, respectively, in neuronal cells exposed to OGD/Rx. Consequently, HDAC9 induced: (1) an increase in protein level of HIF-1 by deacetylation and deubiquitination, thus promoting the transcription of the pro-ferroptotic TfR1 gene; and (2) a reduction in Sp1 protein levels by deacetylation and ubiquitination, thus resulting in a down-regulation of the anti-ferroptotic GPX4 gene. Supporting these results, the silencing of HDAC9 partially prevented either HIF-1 increase and Sp1 reduction after OGD/Rx. Interestingly, silencing of the neurodetrimental factors, HDAC9, HIF-1, or TfR1 or the overexpression of the prosurvival factors Sp1 or GPX4 significantly reduced a well-known marker of ferroptosis 4-HNE after OGD/Rx. More important, in vivo, intracerebroventricular injection of siHDAC9 reduced 4-HNE levels after stroke by preventing: (1) HIF-1 and TfR1 increase and thus the augmented intracellular iron overload; and (2) a reduction of Sp1 and its target gene GPX4. Conclusions: Collectively, results obtained suggest that HDAC9 mediates post-traslational modifications of HIF-1 and Sp1 that, in turn, increases TfR1 and decreases GPX4 expression, thus promoting neuronal ferroptosis in in vitro and in vivo models of stroke.


Asunto(s)
Isquemia Encefálica , Sobrecarga de Hierro , Accidente Cerebrovascular , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Factor 1 Inducible por Hipoxia , Accidente Cerebrovascular/genética , Isquemia Encefálica/metabolismo , Muerte Celular/genética , Factor de Transcripción Sp1/genética , Histona Desacetilasas/genética , Proteínas Represoras
11.
Biomed Pharmacother ; 167: 115503, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729728

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive and often fatal neurodegenerative disease characterized by the loss of Motor Neurons (MNs) in spinal cord, motor cortex and brainstem. Despite significant efforts in the field, the exact pathogenetic mechanisms underlying both familial and sporadic forms of ALS have not been fully elucidated, and the therapeutic possibilities are still very limited. Here we investigate the molecular mechanisms of neurodegeneration induced by chronic exposure to the environmental cyanotoxin L-BMAA, which causes a form of ALS/Parkinson's disease (PD) in several populations consuming food and/or water containing high amounts of this compound. METHODS: In this effort, mice were chronically exposed to L-BMAA and analyzed at different time points to evaluate cellular and molecular alterations and behavioral deficits, performing MTT assay, immunoblot, immunofluorescence and immunohistochemistry analysis, and behavioral tests. RESULTS: We found that cyanotoxin L-BMAA determines apoptotic cell death and a marked astrogliosis in spinal cord and motor cortex, and induces neurotoxicity by favoring TDP-43 cytoplasmic accumulation. CONCLUSIONS: Overall, our results characterize a new versatile neurotoxic animal model of ALS that may be useful for the identification of new druggable targets to develop innovative therapeutic strategies for this disease.

12.
Neurobiol Dis ; 46(1): 225-33, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22311347

RESUMEN

The mitogen-activated protein kinases (MAPKs) superfamily comprises three major signaling pathways: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases or stress-activated protein kinases (JNKs/SAPKs) and the p38 family of kinases. ERK 1/2 signaling has been implicated in a number of neurodegenerative disorders, including Huntington's disease (HD). Phosphorylation patterns of ERK 1/2 and JNK are altered in cell models of HD. In this study, we aimed at studying the correlations between ERK 1/2 and the neuronal vulnerability to HD degeneration in the R6/2 transgenic mouse model of HD. Single and double-label immunofluorescence for phospho-ERK (pERK, the activated form of ERK) and for each of the striatal neuronal markers were employed on perfusion-fixed brain sections from R6/2 and wild-type mice. Moreover, Phosphodiesterase 4 inhibition through rolipram was used to study the effects on pERK expression in the different types of striatal neurons. We completed our study with western blot analysis. Our study shows that pERK levels increase with age in the medium spiny striatal neurons and in the parvalbumin interneurons, and that rolipram counteracts such increase in pERK. Conversely, cholinergic and somatostatinergic interneurons of the striatum contain higher levels of pERK in the R6/2 mice compared to the controls. Rolipram induces an increase in pERK expression in these interneurons. Thus, our study confirms and extends the concept that the expression of phosphorylated ERK 1/2 is related to neuronal vulnerability and is implicated in the pathophysiology of cell death in HD.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Rolipram/farmacología , Animales , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos
13.
Theranostics ; 10(26): 12174-12188, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204336

RESUMEN

Remote limb ischemic postconditioning (RLIP) is a well-established neuroprotective strategy able to protect the brain from a previous harmful ischemic insult through a sub-lethal occlusion of the femoral artery. Neural and humoral mechanisms have been proposed as mediators required to transmit the peripheral signal from limb to brain. Moreover, different studies suggest that protection observed at brain level is associated to a general genetic reprogramming involving also microRNAs (miRNAs) intervention. Methods: Brain ischemia was induced in male rats by transient occlusion of the middle cerebral artery (tMCAO), whereas RLIP was achieved by one cycle of temporary occlusion of the ipsilateral femoral artery after tMCAO. The expression profile of 810 miRNAs was evaluated in ischemic brain samples from rats subjected either to tMCAO or to RLIP. Among all analyzed miRNAs, there were four whose expression were upregulated after stroke and returned to basal level after RLIP, thus suggesting a possible involvement in RLIP-induced neuroprotection. These selected miRNAs were intracerebroventricularly infused in rats subjected to remote ischemic postconditioning, and their effect was evaluated in terms of brain damage, neurological deficit scores and expression of putative targets. Results: Twenty-one miRNAs, whose expression was significantly affected by tMCAO and by tMCAO plus RLIP, were selected based on microarray microfluidic profiling. Our data showed that: (1) stroke induced an up-regulation of let-7a and miR-143 (2) these two miRNAs were involved in the protective effects induced by RLIP and (3) HIF1-α contributes to their protective effect. Indeed, their expression was reduced after RLIP and the exogenous intracerebroventricularly infusion of let-7a and miR-143 mimics prevented neuroprotection and HIF1-α overexpression induced by RLIP. Conclusions: Prevention of cerebral let-7a and miR-143 overexpression induced by brain ischemia emerges as new potential strategy in stroke intervention.


Asunto(s)
Poscondicionamiento Isquémico/métodos , Accidente Cerebrovascular Isquémico/rehabilitación , MicroARNs/metabolismo , Rehabilitación de Accidente Cerebrovascular/métodos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Infusiones Intraventriculares , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/patología , Masculino , MicroARNs/agonistas , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Técnicas Estereotáxicas , Regulación hacia Arriba
14.
Cell Calcium ; 87: 102195, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32240869

RESUMEN

The small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification mechanism activated by different stress conditions that has been recently investigated in experimental models of cerebral ischemia. The expression of SUMOylation enzymes and substrates is not restricted to the nucleus, since they are present also in the cytoplasm and on plasma membrane and are involved in several physiological and pathological conditions. In the last decades, convincing evidence have supported the idea that the increased levels of SUMOylated proteins may induce tolerance to ischemic stress. In particular, it has been established that protein SUMOylation may confer neuroprotection during ischemic preconditioning. Considering the increasing evidence that SUMO can modify stability and expression of ion channels and transporters and the relevance of controlling ionic homeostasis in ischemic conditions, the present review will resume the main aspects of SUMO pathways related to the key molecules involved in maintenance of ionic homeostasis during cerebral ischemia and ischemic preconditioning, with a particular focus on the on Na+/Ca2+ exchangers.


Asunto(s)
Isquemia Encefálica/metabolismo , Precondicionamiento Isquémico , Intercambiador de Sodio-Calcio/metabolismo , Sumoilación , Animales , Humanos , Canales Iónicos/metabolismo , Modelos Biológicos
15.
J Cereb Blood Flow Metab ; 40(10): 2081-2097, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31696766

RESUMEN

The histone deacetylases (HDACs)-dependent mechanisms regulating gene transcription of the Na+/Ca+ exchanger isoform 3 (ncx3) after stroke are still unknown. Overexpression or knocking-down of HDAC4/HDAC5 down-regulates or increases, respectively, NCX3 mRNA and protein. Likewise, MC1568 (class IIa HDACs inhibitor), but not MS-275 (class I HDACs inhibitor) increased NCX3 promoter activity, gene and protein expression. Furthermore, HDAC4 and HDAC5 physically interacted with the transcription factor downstream regulatory element antagonist modulator (DREAM). As MC1568, DREAM knocking-down prevented HDAC4 and HDAC5 recruitment to the ncx3 promoter. Importantly, DREAM, HDAC4, and HDAC5 recruitment to the ncx3 gene was increased in the temporoparietal cortex of rats subjected to transient middle cerebral artery occlusion (tMCAO), with a consequent histone-deacetylation of ncx3 promoter. Conversely, the tMCAO-induced NCX3 reduction was prevented by intracerebroventricular injection of siDREAM, siHDAC4, and siHDAC5. Notably, MC1568 prevented oxygen glucose deprivation plus reoxygenation and tMCAO-induced neuronal damage, whereas its neuroprotective effect was abolished by ncx3 knockdown. Collectively, we found that: (1) DREAM/HDAC4/HDAC5 complex epigenetically down-regulates ncx3 gene transcription after stroke, and (2) pharmacological inhibition of class IIa HDACs reduces stroke-induced neurodetrimental effects.


Asunto(s)
Epigénesis Genética/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteínas de Interacción con los Canales Kv/metabolismo , Neuronas/patología , Proteínas Represoras/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Animales , Corteza Cerebral/patología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Histona Desacetilasas/genética , Humanos , Hipoxia Encefálica/prevención & control , Infarto de la Arteria Cerebral Media/patología , Proteínas de Interacción con los Canales Kv/antagonistas & inhibidores , Proteínas de Interacción con los Canales Kv/genética , Masculino , Fármacos Neuroprotectores , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Intercambiador de Sodio-Calcio/genética , Accidente Cerebrovascular/genética
16.
Mol Neurobiol ; 57(5): 2358-2376, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32048166

RESUMEN

The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes.


Asunto(s)
Hipocampo/fisiología , Intercambiador de Sodio-Calcio/biosíntesis , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Cricetinae , Técnicas de Sustitución del Gen , Células HEK293 , Hipocampo/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Proteínas Recombinantes/metabolismo , Sodio/metabolismo , Intercambiador de Sodio-Calcio/agonistas , Intercambiador de Sodio-Calcio/genética , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
17.
Mol Ther Nucleic Acids ; 18: 1063-1071, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31791013

RESUMEN

It has been demonstrated that the K+-dependent Na+/Ca2+ exchanger, NCKX2, is a new promising stroke neuroprotective target. However, because no pharmacological activator of NCKX2 is still available, microRNA (miRNA) may represent an alternative method to modulate NCKX2 expression. In particular, by bioinformatics analysis, miR-223-5p emerged as a possible modulator of NCKX2 expression. In the light of these premises, the aims of the present study were: (1) to evaluate miR-223-5p and NCKX2 expression in the temporoparietal cortex and striatum of rats subjected to transient middle cerebral artery occlusion; (2) to evaluate whether miR-223-5p targets the 3' UTR of the NCKX2 transcript; and (3) to evaluate the effect of miR-223-5p modulation on brain ischemic volume and neurological deficits. Our results showed that miR-223-5p expression increased in a time-dependent manner in the striatum of ischemic rats in parallel with NCKX2 downregulation, and that the transfection of cortical neurons with miR-223-5p induced a reduction of NCKX2 expression. Moreover, a luciferase assay showed that miR-223-5p specifically interacts with the NCKX2 3' UTR subregion (+7037 to +8697), thus repressing NCKX2 translation. More interestingly, intracerebroventricular infusion of anti-miR-223-5p prevented NCKX2 downregulation after ischemia, thus promoting neuroprotection. The present findings support the idea that blocking miR-223-5p by antimiRNA is a reasonable strategy to reduce the neurodetrimental effect induced by NCKX2 downregulation during brain ischemia.

18.
J Neurosci Methods ; 310: 63-74, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287283

RESUMEN

BACKGROUND: In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS: The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS: The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.


Asunto(s)
Encéfalo/irrigación sanguínea , Precondicionamiento Isquémico/métodos , Animales , Humanos
19.
Neuropharmacology ; 135: 180-191, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29551690

RESUMEN

Hypoxic-ischemic encephalopathy (HI) accounts for the majority of developmental, motor and cognitive deficits in children, leading to life-long neurological impairments. Since the plasmamembrane sodium/calcium exchanger (NCX) plays a fundamental role in maintaining ionic homeostasis during adult brain ischemia, in the present work we aimed to demonstrate (1)the involvement of NCX in the pathophysiology of neonatal HI and (2)a possible NCX-based pharmacological intervention. HI was induced in neonatal mice at postnatal day 7(P7) by unilateral cut of the right common carotid artery, followed by 60 min exposure to 8%O2. Expression profiles of NCX isoforms from embryos stage to adulthood was evaluated in the hippocampus of hypoxic-ischemic and control mice. To assess the effect of NCX pharmacological stimulation, brain infarct volume was evaluated in brain sections, obtained at several time intervals after systemic administration of the newly synthesized NCX activator neurounina. Moreover, the long term effect of NCX activation was evaluated in adult mice (P60) subjected to neonatal HI and daily treated with neurounina for three weeks. Hypoxic-ischemic insult induced a reduction of NCX1 and NCX3 expression starting from day 7 until day 60. Notably, 8 weeks after HI induction in P7 mice, NCX pharmacological stimulation not only reduced infarct volume but improved also motor behaviour, spatial and visual memory. The present study highlights the significant role of NCX in the evolution of neonatal brain injury and in the learning and memory processes that are impaired in mice injured in the neonatal period.


Asunto(s)
Benzodiazepinonas/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/prevención & control , Pirrolidinas/farmacología , Intercambiador de Sodio-Calcio/metabolismo , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Benzodiazepinonas/uso terapéutico , Encéfalo/patología , Femenino , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Masculino , Ratones , Isoformas de Proteínas , Pirrolidinas/uso terapéutico , Intercambiador de Sodio-Calcio/biosíntesis , Factores de Tiempo
20.
Front Neurosci ; 12: 510, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131665

RESUMEN

Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS). Approximately 20% of fALS is associated with inherited mutations in the Cu, Zn-superoxide dismutase 1 (SOD1) gene. In the last decade, ionic homeostasis dysregulation has been proposed as the main trigger of the pathological cascade that brings to motor-neurons loss. In the light of these premises, the present review will analyze the involvement in ALS pathophysiology of the most well studied metal ions, i.e., calcium, sodium, iron, copper and zinc, with particular focus to the role of ionic channels and transporters able to contribute in the regulation of ionic homeostasis, in order to propose new putative molecular targets for future therapeutic strategies to ameliorate the progression of this devastating neurodegenerative disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA